
 

 

 

 

 

 

 

 

Do NOT read the 

problems before 

contest starts. 
 

 

 

 

 

 

 

Contest URL: http://www.link.cs.cmu.edu/contest/current/. 

  

http://www.link.cs.cmu.edu/contest/current/


 

 

2014 Carnegie Mellon University Programming Contest 

and 

ACM ICPC Team Selection Qualification  

Round 1 

6:35pm-10:05pm, Sept 10, 2014 

 

PROBLEMS 

 

A:   Binary Tree 

B:   Strange Billboard 

C:   Phone Cell 

D:   Key Task 

E:   Weird Numbers 

F:   Rectangular Polygons 

G:   Minimizing Maximizer  

H:   Hexagonal Parcels 

I:  House Cleaning 

 



Hints: 

1. Problems are not sorted from easiest to hardest. It is important to solve 

the easiest problems first to minimize your penalty score.  Usually, you 

can guess the difficulty of the problems by looking at the scoreboard. 

2. Be careful about the efficiency of input/output. If the input size is larger 

than 10^5 bytes, try to use “ scanf / printf ” in C++ and 

“ BufferedReader / BufferedWriter ” in Java. 

3. Do not access the internet, except for language support and our online 

judge for submissions. 

 



Problem H Binary Tree Problem H

Binary Tree is a tree data structure where each node has at most two children, usually they are
distinguished as left and right child. And the node having the children are called parent of those
children.

An instruction string is a string consisting of the letters L, R and U. L stands for Left, R for Right
and U for Up. Meaning of these will be clear shortly.

One day I have drawn an infinitely large Binary Tree. In this tree each node has exactly two children
(left child and right child) and each of them has a parent. For this problem, we will consider the parent
of the root is root itself. I put a pen in the root and follow the instruction string S. That is, we look
at the first character if it says L we go to left child, if it says R we go to right child and if it says U then
to the parent. If we receive a U instruction at root we just end up at root since we assumed parent of
the root is root itself.

Now we have another instruction string T. Starting from the node where we are after following the
instruction string S, we will follow the instruction string T. But this time, if we wish we may skip any
instruction in the string T (possibly discarding all of them). You have to tell me how many different
nodes I can end up after following instruction string T (skipping as many instructions as I wish).

For example:
Suppose: S = L and T = LU. Our answer is 3. Following S we will end up at the left child of the

root. Now, when we follow T, there may be 4 cases:

i Skipping all letters: we will be at the same node where we are.

ii Skipping L and following U: we will be at the root.

iii Following L and Skipping U: we will be at the left child of current node.

iv Following both L and U: we will be at the same node as in case i.

Since 3 different nodes we can end up after following T, the answer is 3.

INPUT
First line of the test file contains an integer N (<= 15) denoting number of test cases. Hence follow

N test cases. Each test case consists of two non empty strings. First line will contain instruction string
S and the second line will contain the instruction string T. You may assume that there will not be any
letter other than L, R or U in these strings. Length of the strings will not be greater than 100000.

OUTPUT
For each test case print the case number followed by the number of nodes we can end up finally. Since

the answer may be large, you have to give the answer modulo 21092013.

SAMPLE INPUT
2
L
LU
L
L

SAMPLE OUTPUT
Case 1: 3
Case 2: 2

1

ygu1
Typewritten Text

ygu1
Typewritten Text

ygu1
Typewritten Text

ygu1
Typewritten Text

ygu1
Typewritten Text

ygu1
Typewritten Text

ygu1
Rectangle

ygu1
Rectangle



(This page is intentionally left blank)



Strange Billboard

billboard.c | billboard.C | billboard.java | billboard.p

The marketing and public-relations department of the Czech Technical University has designed
a new reconfigurable mechanical Flip-Flop Bill-Board (FFBB). The billboard is a regular two-
dimensional grid of R×C square tiles made of plastic. Each plastic tile is white on one side and
black on the other. The idea of the billboard is that you can create various pictures by flipping
individual tiles over. Such billboards will hang above all entrances to the university and will be
used to display simple pictures and advertise upcoming academic events.

To change pictures, each billboard is equipped with a ”reconfiguration device”. The device is
just an ordinary long wooden stick that is used to tap the tiles. If you tap a tile, it flips over to
the other side, i.e., it changes from white to black or vice versa. Do you agree this idea is very
clever?

Unfortunately, the billboard makers did not realize one thing. The tiles are very close to each
other and their sides touch. Whenever a tile is tapped, it takes all neighboring tiles with it and
all of them flip over together. Therefore, if you want to change the color of a tile, all neighboring
tiles change their color too. Neighboring tiles are those that touch each other with the whole
side. All inner tiles have 4 neighbors, which means 5 tiles are flipped over when tapped. Border
tiles have less neighbors, of course.

For example, if you have the billboard configuration shown in the left picture above and tap the
tile marked with the cross, you will get the picture on the right. As you can see, the billboard
reconfiguration is not so easy under these conditions. Your task is to find the fastest way to
”clear” the billboard, i.e., to flip all tiles to their white side.

Input Specification

The input consists of several billboard descriptions. Each description begins with a line con-
taining two integer numbers R and C (1 ≤ R,C ≤ 16) specifying the billboard size. Then there
are R lines, each containing C characters. The characters can be either an uppercase letter “X”
(black) or a dot “.” (white). There is one empty line after each map. The input is terminated
by two zeros in place of the board size.

Output Specification

For each billboard, print one line containing the sentence “You have to tap T tiles.”, where
T is the minimal possible number of taps needed to make all squares white. If the situation
cannot be solved, output the string “Damaged billboard.” instead.

ygu1
Rectangle



Sample Input

5 5
XX.XX
X.X.X
.XXX.
X.X.X
XX.XX

5 5
.XX.X
.....
..XXX
..X.X
..X..

1 5
...XX

5 5
...X.
...XX
.XX..
..X..
.....

8 9
..XXXXX..
.X.....X.
X..X.X..X
X.......X
X.X...X.X
X..XXX..X
.X.....X.
..XXXXX..

0 0

Output for Sample Input

You have to tap 5 tiles.
Damaged billboard.
You have to tap 1 tiles.
You have to tap 2 tiles.
You have to tap 25 tiles.



Phone Cell

cell.c | cell.C | cell.java | cell.p

Nowadays, everyone has a cellphone, or even two or three. You probably know where their
name comes from. Do you? Cellphones can be moved (they are “mobile”) and they use wireless
connection to static stations called BTS (Base Transceiver Station). Each BTS covers an area
around it and that area is called a cell.

The Czech Technical University runs an experimental private GSM network with a BTS right on
top of the building you are in just now. Since the placement of base stations is very important
for the network coverage, your task is to create a program that will find the optimal position
for a BTS. The program will be given coordinates of “points of interest”. The goal is to find
a position that will cover the maximal number of these points. It is supposed that a BTS can
cover all points that are no further than some given distance R. Therefore, the cell has a circular
shape.

The picture above shows eight points of interest (little circles) and one of the possible optimal
BTS positions (small triangle). For the given distance R, it is not possible to cover more than
four points. Notice that the BTS does not need to be placed in an existing point of interest.

Input Specification

The input consists of several scenarios. Each scenario begins with a line containing two integer
numbers N and R. N is the number of points of interest, 1 ≤ N ≤ 2 000. R is the maximal
distance the BTS is able to cover, 0 ≤ R < 10 000. Then there are N lines, each containing two
integer numbers Xi, Yi giving coordinates of the i-th point, |Xi|, |Yi| < 10 000. All points are
distinct, i.e., no two of them will have the same coordinates.

The scenario is followed by one empty line and then the next scenario begins. The last one is
followed by a line containing two zeros.

A point lying at the circle boundary (exactly in the distance R) is considered covered. To avoid
floating-point inaccuracies, the input points will be selected in such a way that for any possible
subset of points S that can be covered by a circle with the radius R + 0.001, there will always
exist a circle with the radius R that also covers them.

ygu1
Rectangle



Output Specification

For each scenario, print one line containing the sentence “It is possible to cover M points.”,
where M is the maximal number of points of interest that may be covered by a single BTS.

Sample Input

8 2
1 2
5 3
5 4
1 4
8 2
4 5
7 5
3 3

2 100
0 100
0 -100

0 0

Output for Sample Input

It is possible to cover 4 points.
It is possible to cover 2 points.

The first sample input scenario corresponds to the picture, providing that the X axis aims right
and Y axis down.



Key Task

keys.c | keys.C | keys.java | keys.p

The Czech Technical University is rather old — you already know that it celebrates 300 years
of its existence in 2007. Some of the university buildings are old as well. And the navigation
in old buildings can sometimes be a little bit tricky, because of strange long corridors that fork
and join at absolutely unexpected places.

The result is that some first-graders have often difficulties finding the right way to their classes.
Therefore, the Student Union has developed a computer game to help the students to practice
their orientation skills. The goal of the game is to find the way out of a labyrinth. Your task is
to write a verification software that solves this game.

The labyrinth is a 2-dimensional grid of squares, each square is either free or filled with a wall.
Some of the free squares may contain doors or keys. There are four different types of keys and
doors: blue, yellow, red, and green. Each key can open only doors of the same color.

You can move between adjacent free squares vertically or horizontally, diagonal movement is
not allowed. You may not go across walls and you cannot leave the labyrinth area. If a square
contains a door, you may go there only if you have stepped on a square with an appropriate key
before.

Input Specification

The input consists of several maps. Each map begins with a line containing two integer numbers
R and C (1 ≤ R,C ≤ 100) specifying the map size. Then there are R lines each containing C
characters. Each character is one of the following:

Character Meaning
Hash mark # Wall
Dot . Free square
Asterisk * Your position
Uppercase letter B Y R G Blue, yellow, red, or green door
Lowercase letter b y r g Blue, yellow, red, or green key
Uppercase X X Exit

Note that it is allowed to have

• more than one exit,
• no exit at all,
• more doors and/or keys of the same color, and
• keys without corresponding doors and vice versa.

You may assume that the marker of your position (“*”) will appear exactly once in every map.

There is one blank line after each map. The input is terminated by two zeros in place of the
map size.

ygu1
Rectangle



Output Specification

For each map, print one line containing the sentence “Escape possible in S steps.”, where
S is the smallest possible number of step to reach any of the exits. If no exit can be reached,
output the string “The poor student is trapped!” instead.

One step is defined as a movement between two adjacent cells. Grabbing a key or unlocking
a door does not count as a step.

Sample Input

1 10
*........X

1 3
*#X

3 20
####################
#XY.gBr.*.Rb.G.GG.y#
####################

0 0

Output for Sample Input

Escape possible in 9 steps.
The poor student is trapped!
Escape possible in 45 steps.



Weird Numbers

numbers.c | numbers.C | numbers.java | numbers.p

Binary numbers form the principal basis of computer science. Most of you have heard of other
systems, such as ternary, octal, or hexadecimal. You probably know how to use these systems
and how to convert numbers between them. But did you know that the system base (radix)
could also be negative? One assistant professor at the Czech Technical University has recently
met negabinary numbers and other systems with a negative base. Will you help him to convert
numbers to and from these systems?

A number N written in the system with a positive base R will always appear as a string of
digits between 0 and R − 1, inclusive. A digit at the position P (positions are counted from
right to left and starting with zero) represents a value of RP . This means the value of the digit
is multiplied by RP and values of all positions are summed together. For example, if we use the
octal system (radix R = 8), a number written as 17024 has the following value:

1.84 + 7.83 + 0.82 + 2.81 + 4.80 = 1.4096 + 7.512 + 2.8 + 4.1 = 7700

With a negative radix −R, the principle remains the same: each digit will have a value of (−R)P .
For example, a negaoctal (radix R = −8) number 17024 counts as:

1.(−8)4 + 7.(−8)3 + 0.(−8)2 + 2.(−8)1 + 4.(−8)0 = 1.4096 − 7.512 − 2.8 + 4.1 = 500

One big advantage of systems with a negative base is that we do not need a minus sign to express
negative numbers. A couple of examples for the negabinary system (R = −2):

decimal negabinary decimal negabinary decimal negabinary
-10 1010 -3 1101 4 100
-9 1011 -2 10 5 101
-8 1000 -1 11 6 11010
-7 1001 0 0 7 11011
-6 1110 1 1 8 11000
-5 1111 2 110 9 11001
-4 1100 3 111 10 11110

You may notice that the negabinary representation of any integer number is unique, if no “leading
zeros” are allowed. The only number that can start with the digit “0”, is the zero itself.

ygu1
Rectangle



Input Specification

The input will contain several conversions, each of them specified on one line. A conversion
from the decimal system to some negative-base system will start with a lowercase word “to”
followed by a minus sign (with no space before it), the requested base (radix) R, one space, and
a decimal number N .

A conversion to the decimal system will start with a lowercase word “from”, followed by a minus
sign, radix R, one space, and a number written in the system with a base of −R.

The input will be terminated by a line containing a lowercase word “end”. All numbers will
satisfy the following conditions: 2 ≤ R ≤ 10, −1 000 000 ≤ N ≤ 1 000 000 (decimal).

Output Specification

For each conversion, print one number on a separate line. If the input used a decimal format,
output the same number written in the system with a base −R. If the input contained such
a number, output its decimal value.

Both input and output numbers must not contain any leading zeros. The minus sign “-” may
only be present with negative numbers written in the decimal system. Any non-negative number
or a number written in a negative-base system must not start with it.

Sample Input

to-2 10
from-2 1010
to-10 10
to-10 -10
from-10 10
end

Output for Sample Input

11110
-10
190
10
-10



Rectangular Polygons

polygon.c | polygon.C | polygon.java | polygon.p

In this problem, we will help the Faculty of Civil Engineering. They need a software to analyze
ground plans of buildings. Specifically, your task is to detect outlines of a building when all of
its corners are given.

N

S

W E

y

x

You may assume that each building is a rectangular polygon with each of its sides being parallel
either with X or Y axis. Therefore, each of its vertex angles is exactly either 90 or 270 degrees.

Input Specification

The input contains several buildings. The description of each building starts with a single
positive integer N , the number of corners (polygon vertices), 1 ≤ N ≤ 1000. Then there are N
pairs of integer numbers Xi, Yi giving coordinates of individual corners, |Xi|, |Yi| ≤ 10 000.

You may assume that all corners are listed and no two of them have the same coordinates. The
polygon does always exist, it is closed, its sides do not intersect or touch (except neighboring
sides, of course), and it contains no “holes” inside. In other words, the outline is formed by one
closed line. The order of corners in the input file may be arbitrary.

There is an empty line after each building, then the next one is described. After the last building,
there is a single zero that signals the end of input.

Output Specification

For each building, output one line containing N characters without any whitespace between
them. The characters should be uppercase letters that specify directions of individual walls
(sides) when the building outline is followed. “N” stands for North (the positive direction of the
Y axis), “E” for East (the positive direction of the X axis), “W” for West, and “S” for South.
The “walk” should start in the vertex that has been given first in the input and always proceed
in the clockwise direction.

ygu1
Rectangle



Sample Input

4
0 0
2 2
0 2
2 0

6
1 1
2 2
0 1
1 0
0 2
2 0

0

Output for Sample Input

NESW
WNESWN

The second sample input corresponds to the picture.



� �������	��
 �
 �����������������  ������������� �

!�"$#%"'&)(	*,+.-0/21435+.6�78&�-9(;:4+.6�<0+�-9=>=�?@(A<�"B60(	*C&EDE*GFIH�-0+�DJ-0KMLONPN0Q9FB:R69/S-9(2T
UWV8X�YJZP[]\	^0_A` abV8c�dSegfih�jlk]dmen\8c�X)\	^oc.dS_8p�^�_8X�qre.Zoc.h.dS_8psV	^0c�j5qW^0c�X�Y�^0tStuXvj wx^0y5du[]dSz)X)cvk]wx^9y5dS[>dSz)X�cnV	^oen{

dS_8\8|5h�e�_A|8[~}2X)c�X�j���c.ZP[���h�Z�{'k��b^oY�V�dS_8\8|8h�c.X�\8c.Xve�X�_Oh�e�Zo_8X�dS_Ph�X)pPX)cvk�wx^0yAdS[]duz�X)c]V	^Pe�ZP_8X�Zo|5h�\8|5h�qRV8dmY�V
c�X)\8c�X�e.X)_Oh�ebh�V8Xg[�^9y5du[�|8[��9^otu|8Xn\8c�X�e.X)_OhRZo_�wx^0yAdS[]duz�X)cv� eWdS_8\8|8h�e�k
wx^0yAdS[]duz�X)cWdmeRdu[]\8tSX)[]X�_Ph�X�j�^oeR^]\	du\2X)tSdu_	XgZ0�'e�ZPc�h�X)c�eW�B���v���v�5�����0�,�9�J�J�ik)k�k)���B���v���v�5�����8�,���0�EkB�b^oY�V�e�ZPc�h�X)cWV	^Pe

{�du_8\	|5h�e�^0_	j�{�Zo|5h�\8|5h�e)k;�'�������v�A�����,�A�ge.Zoc.h�eg�9^0tS|8XvegZo_�dS_8\8|5h�eI������� �o�)¡�¡)¡J�¢�xdS_�_8Zo_8£¢j5XvYJc�X�^Pe�dS_8p�Zoc�j5X)cI^o_	j
tSXJh�e¤h�V8X�Z0h�V8X)cgdS_8\8|8h�en\	^Pe.e¤h�V8c.ZP|8poV |8_	Y�V	^o_8poXvjlk]UWV8X�{¥£Gh�V ZP|5h.\	|5hIZ0�bh.V8X�tm^oe�hIe�ZPc�h�X)c¤dSe¤h�V8X�Zo|5h�\8|5hIZo�¦h.V	X
wx^0yAdS[]duz�X)cvk§ _]dS_Oh.X)c�_x��^¤��ZPc.[]X�c § a4w¨YJZo_Oh�X�e�h�^0_OhE�$Zo}	e.X)c��oXvjIh�V	^9hbe.Zo[]XRe.Zoc.h.X)c�e'YJZP|8tmj�}2X©X)y5Y)tu|�j5X�j>��c�Zo[ªh.V8X©\	du\2X)tSdu_	X
^0_�j«wx^0y5du[]dSz)X)cWq4Zo|8tmj�e�h.dStStl\8c.Z5j5|�YJX¬h.V8XIY)Zoc�c.XvYEhbc�X�e.|8tuh�k®MV	^0hWdme4h.V	X¤tSX)_	p0h.VsZ0��h.V8Xge.V8Zoc.h.Xve�hRe.|8}	e.X�¯O|8X)_�YJX¤Z0�
h.V	XIpodS�oX�_xe�Xv¯P|	X)_	Y)XgZ0�Be�ZPc�h�X)c�eWdu_xh.V8XI\	du\2X)tSdu_	X�e�h.dStut�\8c.Z5j5|�YJdS_8p�YJZPc.c�X�YJhRc.Xve�|8tuh�e©��Zoc°^otut�\�ZOe.e.dS}8tuX�YJZo[�}8dS_	^9h�duZP_	e
Z0�®dS_8\8|5h©�9^0tS|8Xve�±
²�³g´�µ
¶c.duh.XI^>\8c�ZopPc�^o[·h.V	^0h�¸
¹ c.Xv^oj8ebh.V	XIj5X�e�YJc�du\8h.dSZo_sZ0�'^>w�^9y5du[]dSz)X�c��5d,k XPk®h.V8XgdS_8duh.dm^0tie.X�¯O|8X�_	YJXnZ0�'e.Zoc.h.X)c�e4du_sh�V8Xg\8dS\�X�tudS_8Xo�
¹ YJZo[]\8|8h.X�e¬h�V8X�tuX�_8p0h�V Zo�¦h�V8X�e�V8ZPc�h�X�e�hne.|8}	e.X�¯O|8X�_	YJX]Zo�¦h.V	X>dS_8duh.dm^0tBe.X�¯O|8X�_	YJX]Z0�We�ZPc�h�X)c�e¬e�h.dStSt'\8c.Z5j5|�YJdS_8pYJZoc�c�X�YEhWc�X�e.|8tºh�e4��Zoc©^otutl\2ZPe�e�dS}8tSXndu_8\	|5h¬j8^0h�^8�
¹ qRc.duh.Xve4h.V8Xgc�X�e.|8tuh�k

»i¼;½;¾«¿
UWV8X4À	c�e�h'tSdu_	XRZ0�	h�V8XRdS_8\8|5h¦Y)Zo_Oh�^odu_	e$h�q4Z¤du_Oh.X�poX�c�e${«^o_	j>ÁÂ�GÃ>Ä�{ ÄMÅ0ÆnÆoÆPÆ8�5�gÄ�ÁÂÄÇÅoÆoÆ¤ÆoÆPÆP�$e�X�\	^0c�^9h�X�j~}O`
^]e�dS_8pPtuXge.\	^oY)Xok®ÈC_Oh.X)pPX)cR{ dSeWh�V8Xg_A|8[~}2X)cRZo��dS_8\8|5h�e©^0_�j«dS_Oh.X�poX)cWÁÂdme4h.V	Xg_O|	[~}2X)c©Zo�$e.Zoc.h.X)c�e4du_sh�V8Xg\8dS\�X�tudS_8Xok
UWV8Xsdu_	dºh�dS^ot4e.X�¯O|8X�_	YJX«Z0�¬e.Zoc.h.X�c�e~dSe>j5X�e�YJc�dS}�Xvj�dS_�h.V	X�_8X)yOh]ÁÉtudS_8Xve)kÊUWV8X�ËO£Gh�V�Zo�Rh.V8Xve�XstudS_8Xve�Y)Zo_Oh�^odu_	e~h.V	X
\	^oc�^o[>X)h.X�c�e4Z0��h.V8X~ËA£Gh�V�e.Zoc.h.X�c�¸�h�q4Z>dS_Oh.X�poX)c�eW� � ^o_	j]� � ���gÄ�� ��Ì � � Ä�{Í�We.X)\	^oc�^0h.Xvj�}A`«^]e.du_8pPtuXge.\	^oY)Xok
Î ¾«¿'½;¾«¿
UWV8XRZP|5h.\8|8hbYJZP_	e�dme�h�e'Zo�2ZP_8tu`�Zo_8XRtSdS_8X©YJZP_Ph�^0dS_8dS_8pg^0_]du_Oh�X)poX�cBX�¯O|	^otAh.Zgh�V8XRtSX)_8poh.V�Z0�2h.V	X©e�V8ZPc�h�X�e�h¦e�|	}	e�Xv¯O|8X)_	Y)X
Z0�$h.V	Xgdu_8duh.dm^0tie.X�¯O|8X�_	YJXnZo�®e.Zoc.h.X�c�eWe�h.dStuti\	c.Z5j5|	Y)du_	p]Y)Zoc�c.XvYEhWc.Xve�|	tºh�e4��Zoc©^0tStl\2ZPe�e�dS}8tSXIj8^9h�^8k
ÏÑÐ«³IÒ ½;Ó)Ô
Õ8ZPcWh.V8XgdS_8\8|8h�¸
Ö8×ÑØ
ÙA×ÑÚA×
ÛÑÛ�×
Û�×ÑÙA×
ÙA×ÑÚA×
Û�ÜÑÙAÜ
ÚA×MÖ8×
h.V	XIYJZoc�c�X�YEhR^0_�e�q4X)cWdme)¸
Ö

Ý®ÞCß2à8á â5ãåä �9æA�

ygu1
Rectangle

ygu1
Rectangle



Hexagonal Parcels

hexagon.c | hexagon.C | hexagon.java | hexagon.p

A civil engineer that has recently graduated from the Czech Technical University encountered
an interesting problem and asked us for a help. The problem is more of economical than
engineering nature. The engineer needs to connect several buildings with an infrastructure.
Unfortunately, the investor is not the owner of all the land between these places. Therefore,
some properties have to be bought first.

The land is divided into a regular “grid” of hexagonal parcels, each of them forms an independent
unit and has the same value. Some of the parcels belong to the investor. These parcels form
four connected areas, each containing one building to be connected with the others. Your task
is to find the minimal number of parcels that must be acquired to connect the four given areas.

A

A

A

B

A

C

C

C

D D

The whole land also has a hexagonal shape with six sides, each consisting of exactly H parcels.
The above picture shows a land with H = 4, parcels with letters represent the four areas to
be connected. In this case, it is necessary to buy four additional parcels. One of the possible
solutions is marked by crosses.

Input Specification

The input contains several scenarios. Each scenario begins with an integer number H, which
specifies the size of the land, 2 ≤ H ≤ 20. Then there are 2.H − 1 lines representing individual
“rows” of the land (always oriented as in the picture). The lines contain one non-space character
for each parcel. It means the first line will contain H characters, the second line H + 1, and
so on. The longest line will be the middle one, with 2.H − 1 characters. Then the “length”
descends and the last line contains H parcels, again.

The character representing a parcel will be either a dot (“.”) for the land that is not owned by
the investor, or one of the uppercase letters “A”, “B”, “C”, or “D”. The areas of parcels occupied
by the same letter will always be connected. It means that between any two parcels in the same
area, there exists a path leading only through that area.

Beside the characters representing parcels, the lines may contain any number of spaces at any
positions to improve “human readability” of the input. There is always at least one space
between two letters (or the dots). After the land description, there will be one empty line and
then the next scenario begins. The last scenario is followed by a line containing zero.

ygu1
Rectangle



Output Specification

For each scenario, output one line with the sentence “You have to buy P parcels.”, where
P is the minimal number of parcels that must be acquired to make all four areas connected
together.

Areas are considered connected, if it is possible to find a path between them that leads only
through parcels that have been bought.

Sample Input

4
B . . C

. . . . C
. A . . C .
. A A . . . .
. A . . . .
. . . D D
. . . .

0

Output for Sample Input

You have to buy 4 parcels.



House Cleaning 

 

 Maomao decides to clean her house (which hasn’t been cleaned for almost 20 years!) 

with water in the MRR River. 

 The rooms in the house are in precise grid pattern, with a door between every two 

neighboring rooms. Once water runs into one room, it will flush into neighboring room if the 

door between them is open. Maomao plans to open some of the doors so that all the rooms 

will be flushed. The only problem is that, rooms have different heights.  

 Doors can be opened in both directions. However, the energy Maomao should use is the 

height of the room that the door pushed forward to. Maomao wants to know how much energy 

she needs to complete the task. 

 

Input 

 The first line contains two integers: the length l and width w of the numbers of the 

rooms (3 ≤ w, h ≤ 40). The next w lines describe the height of each room. The heights are in 

the range of 1 to 100. 

 

Output 

 The minimum energy Maomao needs to use to make all rooms to be flushed. The water 

goes in the house in the room in the top left corner. 

 

Sample Input 

 

4 3 

3 5 2 1 

7 3 4 8 

1 6 5 7 

 

Sample Output 

 

26 

 

 

 

Notes: 

See the picture on the right as an illustration of the sample. 

3 5 2 1

7 3 4

1

8

6 5 7




