

Locating and Identifying Bats
Based on Their Echolocation Cries

A Co-op Work Term Report

Submitted to:

Dr. Pierre Zakarauskas

Submitted by:

Daniel L. Lu

UBC Student Number:

75592063

Date Submitted:

1 May 2010

i

Summary

This report details several methods employed to detect and determine the location and

species of di.erent bats based on acoustic data recorded on four microphones. By

determining the signal-to-noise ratio and analyzing the spectrogram of the data, it was

possible to accurately detect bat cries. Moreover, by cross-correlating spectrograms across

four channels, the times-di.erence-on-arrival across all four channels could be determined,

allowing the calculation of the three-dimensional coordinates of the bat’s position through

multilateration. By comparing contour curves of spectrograms at several signal-to-noise ratio

thresholds, we could determine a degree of correlation between an unknown cry and one

emitted by a con4rmed species, enabling the identi4cation of species.

ii

Table of Contents

Summary .. i

Table of Contents ... ii

List of Figures .. iii

1. Introduction .. 1

2. Detecting Bats ... 2

2.1 FindCries... 2

2.2 FindFMSweeps... 3

2.3 Detection of Weak Cries .. 5

2.4 MergeCries .. 6

2.5 DetectCries .. 7

3. Locating Bats .. 8

3.1 Summary of Multilateration Mathematics... 8

3.2 Cross-Correlation ... 10

3.3 3D Distance Matrix.. 10

4. Identifying Bats .. 12

4.1 Identi4cation Based on Shape ... 12

4.2 Identi4cation Based on Minimum Frequency ... 14

4.3 Multiple Templates ... 14

4.4 Identi4cation Based on Time between Cries ... 15

4.5 IDspecies ... 16

5. Results .. 17

6. Areas for Further Development .. 18

6.1 ‘Bursts’ of Cries .. 18

7. Conclusion .. 20

8. References .. 21

Appendix I: Function Declarations .. 22

applyFMsweeps .. 22

detectCries .. 22

distMatrix ... 23

4ndCries ... 23

4ndFMSweeps ... 23

IDspecies .. 23

mergeCries .. 24

Appendix II: Templates.. 25

Appendix III: Results of Species Identi4cation .. 27

iii

List of Figures

Figure 1 Left: Spectrogram before subtracting noise; Right: After subtracting noise. 2

Figure 2 A cry emitted by Myotis lucifugus. ... 4

Figure 3 Contours of a Myotis leibii cry at a threshold of 8 dB. .. 4

Figure 4 Contours at several threshold values of a Myotis leibii cry that pass the tests in

findFMsweeps. ... 5

Figure 5 A cry emitted by Myotis lucifugus. Cries detected by findFMsweeps are boxed. .. 6

Figure 6 The cry in Figure 5, showing output of mergeCries (red). .. 7

Figure 8 Relative placement of microphones. ... 8

Figure 9 Boolean union and intersection of two contours at di.erent thresholds. In this

case, overlapRatio is 0.4404. ... 13

Figure 10 Three templates of Myotis leibii. See Appendix I. ... 15

1

1. Introduction

Since structures such as wind turbines may pose a serious hazard to bats due to barotrauma

(Baerwald, D'Amours, Klug, & Barclay, 2008), it is important to conduct an environmental

assessment survey in the area prior to constructing these structures to determine the risk of

damaging wildlife. To that end, it is useful to be able to detect, locate, and identify bats based

on purely acoustic data. Using only acoustic data has the advantage of functioning even in

the darkness of night, when bats are most likely to be found. In addition, analysing acoustic

data can also yield the species of the bat, something which other technologies like radar

cannot do.

To develop algorithms to perform these tasks, we used the MATLAB programming

language to write scripts. We then tested the algorithms on previously recorded multi-

channel raw data from four microphones.

Each MATLAB function described in this report may have several versions, based on the

history of how the function was developed. This report only describes the latest version of the

functions at the time of writing. Function versions are numbered, with the largest number

being the latest and best version. For example, when this report refers to findCries, it is

referring to findCries3, which is the latest version.

2

2. Detecting Bats

The detection of cries emitted by bats may be considered a classic signal-detection problem.

These cries are typically very distinct – as such, an algorithm can be implemented to discern

them from noise and other artefacts. The method employed to detect bats is broken into

several passes to accurately identify bat cries without giving false positives.

2.1 FindCries

The 4rst pass, known by the function name findCries, detects areas of high signal-to-noise

ratio by 4rst calculating a spectrogram from the data. To ensure that the spectrogram is

uniform along the vertical frequency axis, it also calculates an array known as noise by taking

the x-axis median for each ordinate value. The reason why noise is needed is illustrated in

Figure 1. Note how the strong artefacts at 0-20 kHz are greatly neutralised.

Figure 1 Left: Spectrogram before subtracting noise; Right: After

subtracting noise.

In addition, the spectrogram is smoothed in two dimensions using a Hanning mask to

mitigate noise; the amount of smoothing done is governed by the variable smoothingSize,

which is sometimes also referred to as smoothSize1. Having thus ensured the uniform

background noise for the spectrogram, the algorithm proceeds to identify areas where the

spectrogram exceeds a certain threshold known as SnrThresh1. It does so by making use of a

window sliding along the time axis to look for a grouping of events above this threshold. This

3

window only exists in frequencies above minFreq, so it ignores any signals that are lower than

that. As it slides from left to right, if it encounters any such event for which the start time is a

period of time less than minGap behind the end time of the previous cry, it would add the

event to the previous cry by extending the end time of the previous cry. If the gap between

an event and the previous one is more than minGap, it is declared a new cry. Cries that are

shorter than minDuration or longer than maxDuration are discarded.

Then, for each detected cry, the algorithm 4nds the cry’s maximum frequency and

minimum frequency, known as cryMaxFreq and cryMinFreq. This is achieved by analyzing

the spectrogram for a single cry along the frequency axis to 4nd where it exceeds

SnrThresh1.

Ultimately, the function findCries outputs numCries, cryMinFreq, cryMaxFreq,

cryStart, cryStop, medianSnr, and noise. It is useful for noise to be outputted by the

function because it may be needed later by findFMsweeps or other routines that require

spectrograms. The variable numCries represents the number of cries detected by findCries.

The arrays cryMinFreq, cryMaxFreq, cryStart, and cryStop are all one-dimensional arrays

for which the length is equal to numCries. For the nth cry, its minimum frequency, maximum

frequency, start time, and stop time are given by cryMinFreq(n), cryMaxFreq(n),

cryStart(n), and cryStop(n), respectively.

2.2 FindFMSweeps

To understand why a second pass is needed, we must 4rst consider the physical properties of

the echolocation cry used by bats of interest. Although findCries is generally excellent at

4nding the cries, the presence of an echo behind certain cries may cause it to trigger false

alarms or give an imprecise estimate of cryStop. Because the cry itself is a frequency-

modulated sweep emitted by the bat, this second pass is known as findFMsweeps.

4

Figure 2 A cry emitted by Myotis lucifugus.

The second pass analyzes the output of the 4rst pass at several signal-to-noise ratio

thresholds, stored in a vector called SnrThresh2. At each of these thresholds, the algorithm

calculates the contours or level curves of the spectrogram.

Figure 3 Contours of a Myotis leibii cry at a threshold of 8 dB.

For each SnrThresh2 level, each contour is subject to many tests that are designed to

4lter out spurious contours, particularly those in the echo. To do this, the function

unpackContour is called, to extract each closed shape as a polygon. Contours that are holes

within other contours are identi4ed and eliminated through use of the function

topoContour2. Then, three properties calculated by the function analyzeContour2 are used.

The 4rst property is the circumference. In general, contours that have a circumference greater

than circumThresh would pass the test. The second property, Theta, represents the general

slope of the contour as an angle, and is calculated from segments on the polygon; the said

segments’ lengths are governed by the variable segLen. FM sweeps are always sloped

downwards. To 4lter out cries that are not sloped downwards, the algorithm calculates a value

known as SlantRatio using Theta and a variable thetaBoundary. Only cries for which

SlantRatio exceeds a parameter known as ratioThresh pass the test. The third property is

Compactness, and is the ratio of the circumference to the area. Ironically, the lower the

Compactness, the more compact the shape. The lowest possible Compactness is achieved by a

circle. Since cries usually take the shape of a crescent, only those with Compactness above a

certain limit known as compactThresh would be accepted.

The function findFMsweeps is repeatedly called by the function applyFMsweeps in order

to 4nd the cries at several SnrThresh2 values. Moreover, applyFMsweeps only calls

findFMsweeps on the areas identi4ed by findCries. There are many such areas, so

findFMsweeps may be called many times.

5

The reason why several SnrThresh2 values are needed is because there may be some

extremely strong cries for whose contours may connect with the contours of their echos or

other noises at lower SnrThresh2 levels. In that case, the lower threshold contours would not

pass the tests, whereas a contour generated at a higher SnrThresh2 level would.

Figure 4 Contours at several threshold values of a Myotis leibii cry that

pass the tests in findFMsweeps.

The output of applyFMsweeps is the accumulation of the outputs of all the instances of

findFMsweeps that are called. These are numCries2, cryStart2, cryStop2, cryMinFreq2,

cryMaxFreq2, and slantRatio. The 4rst 4ve outputs have the same purposes and structures

as those in findCries, except they are more re4ned. The last output is a one-dimensional

array whose size is numCries2, containing the slantRatio of each cry. It may be useful in

identifying the bat’s species, though an algorithm to do so has not been developed yet.

2.3 Detection of Weak Cries

The synthesis of findCries and findFMsweeps is capable of detecting cries that are strong

enough to have a recognizable sweep. However, there may be very weak cries that would not

pass the tests in findFMsweeps. It was mentioned before that the main drawback of

findCries is that echos may distort the output; however, for very weak cries, the echo is not

strong enough to be detected by the microphone. As such, it suHces to call findCries again

with a di.erent set of parameters to detect weak cries. These parameters are optimized to 4nd

weak cries and not strong ones by using a low value for maxDuration, a higher value for

minFreq, and so on. Parameters used for detecting weak cries have the pre4x ‘W’ in their

identi4ers – for example, the minFreq for detecting weak cries is known as WminFreq.

6

2.4 MergeCries

Occasionally, a cry may be broken into two, or have distinct harmonics. In that case, more

than one contour might be identi4ed by findFMsweeps for a single cry.

Figure 5 A cry emitted by Myotis lucifugus. Cries detected by

findFMsweeps are boxed.

The function mergeCries remedies the problem by merging any cries that are closer

together than the threshold mergeThresh. Cries are declared as separate cries only if they are

further apart than mergeThresh2. If there are two cries whose distance from each other lies

between mergeThresh and mergeThresh2, then the second cry is ignored as it is most likely to

be an echo. If cries are to be thought of as boxes in a spectrogram, then merged cries take the

form of the minimum bounding box of all the cries that were merged together to form it – i.e.

the cryMinFreq of a merged cry is the minimum of all the cryMinFreqs of the cries that were

merged together to form it, the cryMaxFreq is the maximum of all the cryMaxFreqs, the

cryStart is the start of the 4rst cry of those that were merged together, and the cryStop is

that of the last.

7

Figure 6 The cry in Figure 5, showing output of mergeCries (red).

In addition to merging broken cries and removing echos, the function mergeCries has

the integral role of merging the results of weak cry detection and strong cry detection. As

such, it is only called after all the previous cry detection passes.

2.5 DetectCries

All the cry detection functions described so far are utilized in the function detectCries,

which takes as input the time series data, plus all the parameters needed for cry detection,

and then invokes a combination of findCries, applyFMsweeps, and mergeCries. Ultimately,

the purpose of detectCries is to make it possible to detect cries just by using one line of

code, thus saving space in bigger programs wherein cries need to be detected several times

or at many places.

8

3. Locating Bats

Since there are four microphones, it is possible to calculate the location of bats in three

dimensions by discerning the times-di.erence-on-arrival (TDOA) of signals across the

di.erent channels. The mathematics of multilateration is greatly simpli4ed by placing one of

the microphones, which we call mic0, on the origin of the coordinate system.

Figure 8 Relative placement of microphones.

Microphones mic1, mic2, and mic3 are on an equilateral triangle centred on mic0. The

distance of any other microphone to mic0 is d0n; the length of the edge of the triangle is d12.

3.1 Summary of Multilateration Mathematics

The problem of 4nding the coordinates of an emitter based on the relative times at which the

signal was received on multiple detectors can be reduced to a solvable system of equations

(Bucher & Misra, 2002). Let there be an emitter (i.e. a bat) at �����, ���� , ����	. The the distance

� and time �� taken to reach mic0, which is centered on �0,0,0	, is given by

� = ��� = ������ + ����� + �����

where � is the speed of sound through air. The time �� taken to reach any of the other

microphones is given by

� = ��� = ������ − ��	� + ����� − ��	� + ����� − ��	�

where �� , �� , and �� are the coordinates of the microphone. Let us consider the time-

di.erence-on-arrival (TDOA) for one of the three outer microphones, �� :

��� = ���� − ��	 =
� −
�

Rearranging and squaring the above, we obtain:

�� = ���� +
�	�

9

Rearranging and expanding the above, we obtain:

0 = ����	� + 2���
� +
�� −
��

Dividing by ���, we obtain:

0 = ��� + 2
� +
�� −
��
���

Let us for now restrict � to 2 or 3, as we compare the case for mic1 with mic2 or mic3.

0 = ��� + 2
� +
�� −
��
���

0 = −��� − 2
� −
�� −
��
���

0 = ��� − ��� +
�� −
��
���

−
�� −
��
���

Let us consider
��. Expanding, we obtain:

�� = ��� + ��� + ��� − 2������ − 2������ − 2������ + ����� + ����� + �����

= ��� + ��� + ��� − 2������ − 2������ − 2������ +
�� ∴
�� −
��

= −��� − ��� − ��� + 2������ + 2������ + 2������

Combining this result with the previous equation, we obtain:

0 = ��� − ��� + −��� − ��� − ��� + 2������ + 2������ + 2������
���

− −��� − ��� − ��� + 2������ + 2������ + 2������
���

Note that the above equation takes the form of below:

0 = ������ + ������ + ������ +
��� = 2��
���

− 2��
���

�� = 2��
���

− 2��
���

�� = 2�
���

− 2��
���

� = ��� − ��� − ��� + ��� + ���
���

+ ��� + ��� + ���
���

for each case where � is 2 or 3. As such, this forms a set of homogeneous linear equations,

demonstrating that it is mathematically possible to derive the coordinates using three TDOA

values generated from four microphones.

In the MATLAB algorithm that we are using, ��, ��, and �� are known respectively as dt1,

dt2, and dt3.

10

3.2 Cross-Correlation

In order to accurately 4nd the TDOA, a method more precise than using cryStart or cryStop

must be used. The method known as cross-correlation involves sliding two signals across each

other to see where they overlap the most. Because of the great amount of noise, it is

impractical to perform this on the time series data; as such, the cross correlation is done on

the spectrograms of the two signals. This yields the additional advantage of being able to

analyze for Doppler shift.

For maximum eHciency, the cross-correlation should only be done to the extent where

it is possible. The maximum amount of di.erence in detection times between mic0 and any of

the other microphones is physically limited by maxDelay0. The maximum amount of

di.erence in detection times between any of the other microphones is limited by maxDelayn.

The algorithm only performs cross-correlation on cries for which their cryStart times satisfy

this criterion; matching cries are indexed in the array Imatch. Moreover, the sliding of the

spectrograms only takes place within physically possible limits.

Vertical sliding of the spectrograms can account for frequency shift. Since there is a limit

to how fast bats can Jy, the Doppler shift is limited to a 4xed amount; hence, vertical cross-

correlation is also limited.

3.3 3D Distance Matrix

Having thus found the TDOA, a computationally inexpensive method must be used to

determine the coordinates of the bat’s location. The algorithm calculates a four-dimensional

array known as the 3D distance matrix, Dt. For any set of coordinates x, y, and z, the distance

matrix stores the TDOA values as dt1=Dt(x,y,z,1), dt2= dt1=Dt(x,y,z,2), and

dt3=Dt(x,y,z,3). To convert the coordinates to physical units, there are three one-

dimensional arrays X, Y, and Z so that the coordinates in meters on a coordinate system

centered on mic0 are X(x), Y(y), and Z(z).

This matrix Dt is of course of 4nite resolution, and hence to 4nd the best estimate for x,

y, and z, there must be a search algorithm to 4nd the closest TDOA triplet in Dt. This involves

11

calculating another three-dimensional matrix E that contains the sum of the squares of the

di.erences between the detected TDOA and every TDOA value inside Dt. The coordinates x, y,

and z are obtained by 4nding the minimum of E.

It is perhaps easier to think of Dt as dividing the three-dimensional space into little

rectangular prisms (i.e. volumetric cells or “pixels”), and then 4nding which one the bat is most

likely to be in. The dimensions, in meters, of Dt is governed by maxX, maxY, and maxZ; and the

size of each volumetric cell, also in meters, is given by dx, dy, and dz.

The function distMatrix generates Dt, X, Y, and Z, taking as input the positions of the

microphones, mic1x, mic1y, mic2x, mic2y, mic3x, and mic3y; the speed of sound; maxX, maxY,

and maxZ; and dx, dy, and dz. It also outputs the number of cells in each dimension.

12

4. Identifying Bats

The cries emitted by di.erent species may be distinguished by the shape of the spectrogram,

the minimum frequency of the cry (the maximum frequency is usually lost due to attenuation

in the air), and the time between cries. The algorithm mainly tries to match the shape of the

spectrogram of an unknown cry against that of veri4ed templates, though cryMinFreq and

time between cries is also important in the algorithm’s decision.

4.1 Identi-cation Based on Shape

It is impractical to match the spectrograms of the cries directly, since spectrograms are three-

dimensional (time, frequency, and intensity). The cries have a wide range of intensity, and the

algorithm must not be biased based on intensity. Hence, it is better to focus upon the

contours of the spectrogram, just like in findFMsweeps. For each cry that has been found by

detectCries, several contours of the relevant spectrogram are calculated at di.erent

thresholds determined by the array SnrThresh3. The many levels of SnrThresh3 eliminate the

problem of di.erent loudness of cries, as well as the problem of “broken” cries, since it is most

likely that at least one threshold level will produce a contour that is not broken.

As with findFMsweeps, there is the problem of eliminating spurious contours that arise

from noise and the “echo”. However, this problem is greatly simpli4ed with the knowledge

that a cry actually exists in the spectrogram – rather than trying to verify whether there is at

all a cry, we can now simply take the largest contour for each SnrThresh3 value. Most often,

the largest contour is the cry itself that has been detected by detectCries. As such, a set of

relevant contours are generated for each cry.

First, such a set of contours are generated for some cries for which the species is already

known. These will be used as templates against which the contours of unknown cries will be

compared. The templates are chosen by a human so as to give the most precise identi4cation

of cries, though detectCries is still executed on them to ensure that the algorithm can

detect these cries.

13

The algorithm compares each unknown cry with several templates by comparing every

possible combination of di.erent SnrThresh3 levels, and then outputting the best match for

each template. The template for which the best match is the highest is most likely to be the

same species as the unknown cry.

For each combination of SnrThresh3 levels, to compare two contours, the algorithm

4rst aligns the two contours. For each contour, the algorithm calculates the coordinates of the

average of all the points that make up the polygonal contour. Then, the algorithm shifts them

to line these 2 points up. The shift in the horizontal time axis is irrelevant; however, the shift in

the frequency axis, referred to as Shifty, is important in determinining the species. The more

the Shifty, the less likely the two contours are emitted by the same species.

Then, the algorithm calculates the Boolean union and intersection of that pair of

contours. The crux of this species identi4cation algorithm is the overlapRatio, given by the

area of the intersection divided by the area of the union. If the two contours are the same,

then the ratio of the intersection to the union is one. Otherwise, the higher the overlapRatio

is, the more alike the two contours are.

Figure 9 Boolean union and intersection of two contours at di.erent

thresholds. In this case, overlapRatio is 0.4404.

For each cry, the algorithm takes the maximum overlapRatio for each template. The

algorithm then calculates the weighted sum of the overlapRatio and the inverse of Shifty

for each template. This is accumulated for all the cries in the 4le, and is 4nally stored in a

14

vector called SPECIES. The maximum in SPECIES determines the ultimate decision of the

algorithm for the entire 4le; the algorithm outputs the top three candidates in SPECIES.

4.2 Identi-cation Based on Minimum Frequency

To avoid having to match every single template with each unknown cry, which is prohibitively

computationally expensive, the algorithm 4rst 4nds the templates that are most possible

based on cryMinFreq. A human speci4es several ranges of possible minimum frequencies,

and which species can be found in these frequency ranges. This is done by organizing

“groups” of species using the cell array GROUP. For instance, GROUP{1}, the 4rst group, might

consist of species 1, 2, and 3, and GROUP{2}, the second group, might consist of species 1, 2, 3,

4, and 5. Note that each species may be part of more than one group. The frequency range for

each group is determined in the array SpeciesFreq. For each group iGroup, the frequency

range lies between SpeciesFreq(iGroup) and SpeciesFreq(iGroup+1), inclusive. Let us

consider an example in which SpeciesFreq(1:3) is equal to [0, 30500, 31000]. Taking our

previous example for the groups, it would mean that species 1, 2, and 3 can range from 0 to

31000 Hz, and species 10 and 11 can only range from 30500 to 31000 Hz. So, if a cry is less

than 30500 Hz, it is pointless to compare it with species 4 and 5, so comparing it only with

species 1, 2, and 3 suHces. Conversely, if a cry lies between 30500 and 31000 Hz, it is just as

possible for it to be species 4 and 5 as it is for it to be species 1, 2, or 3, so it must be compared

with all 4ve of them.

The more the number of groups, the more precise; the number of groups is determined

by numGroups. For each unknown cry, the algorithm 4nds the frequency range in which it

belongs, and only matches it against the group corresponding with the range. Since

computation time increases linearly with the number of templates, avoiding comparison with

unlikely templates can save a signi4cant amount of time.

4.3 Multiple Templates

Some species have a large amount of biological variance within that species, and the cries

emitted by di.erent individuals in the species may be suHciently di.erent to put many

individuals of that species at a disadvantage when being compared by the algorithm. Thus,

15

for some species, multiple templates are used. Usually secondary or tertiary templates are

sourced from 4les that were routinely misidenti4ed as other species. Near the end of the

algorithm, the results of all the templates for that particular species are summed prior to the

calculation of the maximum in SPECIES. It is important to realize that the algorithm treats each

template as if they are separate species until the end, when this step is performed. If needed, a

multiplier may be used to maintain balance.

Figure 10 Three templates of Myotis leibii. See Appendix II.

4.4 Identi-cation Based on Time between Cries

The algorithm calculates time between cries by 4nding the mean di.erence in the array

cryStart. In distinguishing between Lasiurus cinereus and Eptesicus fuscus, which have a

similar frequency range, the algorithm takes into account the observation that E. fuscus

generally has a shorter time between cries, and modi4es the array SPECIES accordingly.

Whilst a short time between cries means that the emitter was more likely to be E. fuscus,

no conclusion can be drawn if the time between cries is long. This is because the algorithm

does not distinguish between E. fuscus and Lasionycteris noctivagans (it uses the same

templates for them), and L. noctivagans may have a signi4cantly longer time between cries. So

E. fuscus and L. noctivagans combined have a great variance in time between cries (see

Appendix III). However, it is possible that in the future the algorithm may be re4ned so as to

di.erentiate between E. fuscus and L. noctivagans.

The algorithm also outputs the time between cries per 4le so that human users may

draw their own conclusions.

16

4.5 IDspecies

The function IDspecies performs everything described in this section. It outputs the decision

on which species is most likely in the array strongest, where strongest(1) corresponds to

the most likely species, and strongest(2) corresponds to the second most likely, and so on.

Moreover, it outputs a number correctness which gives some estimate of how correct the

decision is. This is calculated from the di.erence between the SPECIES of the 4rst and second

best matches, the total overlapRatio (if the total overlapRatio for all templates is very low, it

means that none of the templates matched well), and the amount of Shifty. However,

correlation between correctness and the actual correctness of the decision is quite minimal.

See Appendix I and Appendix III.

17

5. Results

When the optimized detection algorithm was tested on twenty 4les containing veri4ed cries

from Myotis leibii, Myotis lucifugus, Lasiurus cinereus, and Eptesicus fuscus, the detector

managed to accurately pinpoint the start and stop times of 93.6% of the cries (weighted by

strength), and with a precision of 0.85 milliseconds. Out of about 417 cries in all the 4les, the

detector only returned one false positive. This was performed by using a Microsoft Excel 4le to

store the start and stop times of cries found visually by the human. For each cry, the human

sets an arbitrary weight based on the perceived strength of the cry – a strong cry would have

a weight close to 1 and a weak one would have a weight close to 0. Each time the algorithm

4nds a cry that is in the Excel 4le, it adds the weight to the current score. For instance, if there

are three cries with weights 0.9, 0.7, and 0.2, and the algorithm detects the 4rst two but

misses the third, then the score would be �0.9 + 0.7	/�0.9 + 0.7 + 0.2	 = 89%. As such, the

algorithm is not penalized greatly for missing very weak cries, though it is still better not to

miss them. False positives, in which the algorithm 4nds a cry that the human did not, are

counted separately. Usually, the human is considered to be more correct, so false positives are

minimized. In this case, the only false positive appears to be an artefact of noise. The function

checkbat was developed speci4cally to compare cryStart and cryStop times with the

Microsoft Excel 4le.

The species identi4cation algorithm was tested on 41 4les containing cries from already

identi4ed species, including Myotis leibii, Myotis lucifugus, Myotis septentrionalis, Lasiurus

cinereus, Lasiurus borealis, Eptesicus fuscus or Lasionycteris noctivagans, and Perimyotis

sub"avus, including the 20 4les used to test cry detection. It correctly identi4ed 38 out of 41

cries. Two of the misidenti4cations were when the algorithm mistook Myotis lucifugus for

Myotis leibii, which are very similar-sounding. See Appendix III.

The algorithm for multilateration has not been suHciently tested to tell whether it is

working as intended.

18

6. Areas for Further Development

The eventual goal is to process large multichannel data. At present, the script developed so

far is capable of loading very large (~2.6 GB) raw multichannel audio data, detecting cries, and

outputting some coordinates for the matching cries. It detects the cries on the four channels

independently, and computing memory is conserved by processing the 4le in smaller bu.ers.

6.1 ‘Bursts’ of Cries

A burst of bat cries is de4ned as a series of regular echolocation cries emitted by one

individual bat. The length of a burst may contain any number of cries, as long as the cries are

more or less regular (i.e. there are no excessively large gaps between any two cries) and are

deemed most likely to come from one individual. The precise de4nition of a burst is arbitrary.

The concept of a burst is needed when processing very large 4les that contain cries from

many individuals at many di.erent points in time. Firstly, it is very diHcult to discern the

species of a bat based on only one cry, so IDspecies is designed to work with bursts of cries.

Secondly, the time between cries is of great interest to bat biologists, and accurately

identifying bursts will greatly improve the precision of the estimate of time between cries.

Thirdly, an algorithm can be used to interpolate the Jight path of the bat using splines based

on the coordinates generated by multilateration. Such an interpolation would hopefully

mitigate inaccuracies in a fashion similar to the concept of smoothing the data. It would also

make it easier to visualize the Jight paths. In addition, it may be possible to extrapolate in

case a few cries were too weak to be detected.

The short wave 4les that IDspecies has been tested on so far only contain single bursts;

but when working with very large 4les, the algorithm must be capable of automatically

detecting such bursts. A way to do this would be to use a function similar to mergeCries, by

grouping cries into bursts only when the gap between cries is less than a certain threshold.

Ideally, however, the algorithm should be capable of discerning such bursts even when there

are multiple bats. For that, more advanced algorithms should be developed in the future.

19

6.2 Identi-cation Based on Time between Cries and slantRatio

It was mentioned in Section 4.4 that the time between cries can be highly useful in identifying

bat species. In the future it would be best to di.erentiate between Eptesicus fuscus and

Lasionycteris noctivagans based on time between cries.

In addition, the variable slantRatio outputted by 4ndFMsweeps may be useful to some

extent in identifying bat species. It may be possible to further reduce the number of

templates needed to compare with each cry by analyzing its slantRatio. For instance,

consider the cries of Myotis septentrionalis and the cries of Perimyotis sub"avus, which have

similar cryMinFreq. It is clear that the former is much more steeply sloped than the latter.

Figure 11 Contours of Myotis septentrionalis and Perimyotis sub"avus cries,

respectively.

20

7. Conclusion

The algorithms for detecting bats and identifying bat species are capable of functioning with

acceptable precision and are useful in the future.

21

8. References

Baerwald, E. F., D'Amours, G. H., Klug, B. J., & Barclay, R. M. (2008, August 26). Barotrauma is a

Signi4cant Cause of Bat Fatalities at Wind Turbines. Current Biology, 18(16), pp. R695-

R696.

Bucher, R., & Misra, D. (2002, August 1). A Synthesizable VHDL Model of the Exact Solution for

Three-dimensional Hyperbolic Positioning System. VLSI Design, 15(2), pp. 507-520.

22

Appendix I: Function Declarations

These are the declarations of some important functions in their latest form, organized

alphabetically. Function name is bolded. Note version number.

applyFMsweeps

Second pass of strong cry detection. Uses findFMsweeps2.
function [numCries2, cryStart2, cryStop2, cryMinFreq2, cryMaxFreq2, slantRatio] = ...
 applyFMsweeps2applyFMsweeps2applyFMsweeps2applyFMsweeps2(...
 data,...%The time series data
 cryStart,...%in samples, output of findCries3
 cryStop,...%in samples, output of findCries3
 noise,...%1-dimensional array, size is height of spectrogram, in dB
 minFreq,...%Minimum freuqency for cries, in Hz
 smoothSize,...%smoothSize2, size to smooth spectrogram
 FFTlen,...%The length to perform fast fourier transform on
 sr,...$The sampling rate of data
 noverlap,...%This is calculated in detectCries
 SnrThresh2, ...%Threshold for second pass, in dB
 circumThresh,...%Minimum circumference, in second pass
 compactThresh,...%Minimum compactness, in second pass
 thetaBoundary,...%Boundary of theta in second pass
 ratioThresh,...%Threshold for slantRatio, in second pass
 segLen...%Segment across which to calculate theta in second pass
)

detectCries

Detects cries. Uses findCries3, applyFMsweeps2, and mergeCries.
function [cryStart3, cryStop3, numCries3, cryMinFreq, cryMaxFreq,...
 slantRatio, medianSNR, noise] = detectCriesdetectCriesdetectCriesdetectCries(...
 data, ...%The time series data
 sr, ...%Samping rate, in Hz
 FFTlen,...%The length to perform fast fourier transforms on
 windowShift,...%The amount of shift of the window
 SnrThresh1,...%Threshold for first pass, in dB
 minFreq,...%Minimum frequency for cries, in Hz
 minDuration,...%Minimum duration of cry in first pass, in seconds
 maxDuration,...%Maximum duration of cry in first pass, in seconds
 minGap,...%Minimum gap between cries, in seconds
 smoothSize1,...%Size to smooth spectrogram
 thetaBoundary ,...%Boundary of theta in second pass
 ratioThresh,...%Threshold for slantRatio, in second pass
 circumThresh,...%Minimum circumference, in second pass
 compactThresh,...%Minimum compactness, in second pass
 SnrThresh2,...%Threshold for second pass, in dB
 segLen,...%Segment across which to calculate theta, in second pass
 smoothSize2,...%Size to smooth spectrogram, mustbe array of 2 positive numbers
 WSnrThresh1,...%SnrThresh1 for weak cries, in dB
 WminFreq,...%minFreq for weak cries, in Hz
 WmaxDuration,...%maxDuration for weak cries, in seconds
 WminDuration,...%minDuration for weak cries, in seconds
 WminGap,...%minGap for weak cries, in seconds
 mergeThresh,...%Threshold to merge, in seconds
 mergeThresh2...%Threshold to not merge, in seconds
)

23

distMatrix

Generates a 3D distance matrix for multilateration.

function [Dt, X, Y, Z, numX, numY, numZ] ...
 = distMatrixdistMatrixdistMatrixdistMatrix(...
 maxX, maxY, maxZ,...%Physical size of matrix, in meters from center
 dx, dy, dz,...%Resolution of matrix, in meters
 mic1x, mic1y,...
 mic2x, mic2y,...
 mic3x, mic3y,...%Positions of microphones (other than mic0), in meters
 c... %Speed of sound, in meters per second
)

-ndCries

First pass of cry detection. Uses myHanning and smooth2D.
function [cryMinFreq, cryMaxFreq, numCries, cryStart, cryStop, medianSnr, noise] = ...
 findCries3findCries3findCries3findCries3(...
 data,... %The time series data
 sr,... %Sampling rate, in Hz
 FFTlen,... %The length to perform fast fourier transform on
 minFreq,... %Minimum frequency that we expect a cry to be, in Hz
 SNRthresh,... %Threshold, in dB
 minDuration,... %Minimum duration of a cry, in seconds
 maxDuration,... %Maximum duration of a cry, in seconds
 minGap,... %Minimum gap between cries, in seconds
 smoothingSize... %Size of hanning window to smooth spectrum
)

-ndFMSweeps

Second pass of strong cry detection. Uses analyzeContour2, topoContour2, and unpackContour4.
function [ContourxOut, ContouryOut, numCOut, NumPtOut, CircumfOut, SlantRatioOut,
CompactnessOut] = ...
 findFMsweeps3findFMsweeps3findFMsweeps3findFMsweeps3(...
 Snr,...%Spectrogram calculated by applyFMsweeps
 SnrThresh2, ...%Threshold for second pass, in dB
 circumThresh,...%Minimum circumference, in second pass
 compactThresh,...%Minimum compactness, in second pass
 thetaBoundary,...%Boundary of theta in second pass
 defaultRatio,...%Initialized in applyFMsweeps, hardcoded
 ratioThresh,...%Threshold for slantRatio, in second pass
 segLen...%Segment across which to calculate theta in second pass
)

IDspecies

Identi4es bat species. Uses detectCries. Note that templatespath and detectCriesStuff must be

valid paths for the function to work.
function [SPECIES,correctness,tBtwnCries,CryMinFreq,strongest] = ...
 IDspeciesIDspeciesIDspeciesIDspecies(...
 data,...%time series data of a burst of cries
 sr_file,...%sampling rate of file, in Hz
 sr_template,...%sampling rate of template, in Hz
 SnrThresh3,...%Thresholds to calculate contours, in dB
 padding,...%in seconds
 CryMinFreqTrim,...%percent, between 0 and 100.
 smoothSize3,...%Smoothing size
 yshiftrange,... %integer, in multiples of freqSpacing of sr_template
)

The contents of templatespath and detectCriesStuff are as follows (please note that exact paths

must be changed for this to work on di.erent computers):
 load 'F:\Documents\2010W co-op\m files\templates' templatex templatey templates

numSpecies Shiftweight SpeciesFreq GROUP numGroups;
 load 'F:\Documents\2010W co-op\m files\detectCriesStuff' FFTlen windowShift

SnrThresh1 minFreq minDuration ...
 maxDuration minGap smoothSize1 thetaBoundary ratioThresh circumThresh ...
 compactThresh SnrThresh2 segLen smoothSize2 WSnrThresh1 WminFreq ...
 WmaxDuration WminDuration WminGap mergeThresh mergeThresh2;

24

mergeCries

Merges bat cries that are too close together, and ignores possible echos.
function [cryStart3, cryStop3, numCries3, cryMinFreq, cryMaxFreq] = ...
 mergeCriesmergeCriesmergeCriesmergeCries(...
 cryStart2,...%in samples
 cryStop2,...%in samples
 numCries2,...%must be integer
 mergeThresh,...%in samples. Converted from seconds to samples in detectCries.
 mergeThresh2,...%in samples. See above.
 cryMinFreq2,...%in Hz
 cryMaxFreq2...%in Hz
)

25

Appendix II: Templates

Below are the contours of all the templates being used as of writing. The number of

templates, including multiple ones for the same species, is known as numSpecies. Recall that

the algorithm treats each template as if they are all di.erent species until the end, when it

sums up the results for each actual species.

The templates are polygons, with vertices stored in the cell arrays templatex and

templatey. All polygons are clockwise-oriented. For each SnrThresh3 threshold iSnr for each

template species iSpecies, there is a polygon that is de4ned as templatex{iSpecies,iSnr},

templatey{iSpecies,iSnr}. The nature of cell arrays allows templatex{iSpecies,iSnr} to

vary in size with respect to iSpecies and iSnr, though it should always match

templatey{iSpecies,iSnr}. There is a separate cell array the size of numSpecies called

templates that stores the names of the species as strings.

26

27

Appendix III: Results of Species Identi-cation

The following shows the output of the function IDspecies for 47 4les, of which 41 are known

species. From left to right: 4le name; 4rst most likely species; second most likely species; third

most likely species; an estimate of correctness (the higher the better, in general); trimmed

mean time between cries (in seconds); mean cryMinFreq. Incorrect identi4cations are set in

red font, and unknown species are set in blue font. Note that here Eptesicus fuscus and

Lasionycteris noctivagans are treated as one species EPFULANO. Eventually in the future it

would be best to di.erentiate them based on tBtwnC (see section 4.4).

01. Talbot...rus cinereus ; 65%LACI; 35%EPFULANO; 0%MYLE; c=109.5764; tBtwnC=0.24624; CMinF=24KHz
02. Wolfe_...otis lebeii) ; 79%MYLE; 21%PIP; 0%LACI; c=107.334; tBtwnC=0.0617; CMinF=45KHz
03. Wolfe_...otis lebeii) ; 83%MYLE; 17%PIP; 0%LACI; c=82.8702; tBtwnC=0.080652; CMinF=46KHz
04. Wolfe_...otis lebeii) ; 81%MYLE; 19%PIP; 0%LACI; c=76.9703; tBtwnC=0.087148; CMinF=48KHz
05. Wolfe_...otis lebeii) ; 84%MYLE; 16%PIP; 0%LACI; c=128.3396; tBtwnC=0.090228; CMinF=46KHz
06. Wolfe_...s lucifugus) ; 29%MYLU; 25%MYLE; 19%MYSE; c=6.268; tBtwnC=0.082952; CMinF=38KHz
07. Wolfe_...otis lebeii) ; 80%MYLE; 20%PIP; 0%LACI; c=113.6419; tBtwnC=0.056168; CMinF=48KHz
08. Wolfe_...otis lebeii) ; 81%MYLE; 19%PIP; 0%LACI; c=87.3484; tBtwnC=0.08638; CMinF=45KHz
09. Wolfe_...otis lebeii) ; 30%MYLE; 25%MYLU; 21%PIP; c=4.7599; tBtwnC=0.091632; CMinF=35KHz
10. Wolfe_...otis lebeii) ; 26%MYLE; 25%PIP; 20%MYLU; c=3.4198; tBtwnC=0.10664; CMinF=38KHz
11. Wolfe_...otis lebeii) ; 27%MYLE; 26%PIP; 23%MYLU; c=0.70606; tBtwnC=0.10724; CMinF=36KHz
12. Wolfe_...us cinereus) ; 54%LACI; 46%EPFULANO; 0%MYLE; c=4.7815; tBtwnC=0.21832; CMinF=26KHz
13. Wolfe_...us cinereus) ; 52%LACI; 48%EPFULANO; 0%MYLE; c=6.0076; tBtwnC=0.21496; CMinF=26KHz
14. Wolfe_...us cinereus) ; 60%LACI; 40%EPFULANO; 0%MYLE; c=101.514; tBtwnC=0.3892; CMinF=24KHz
15. Wolfe_...icus fuscus) ; 61%EPFULANO; 39%LACI; 0%MYLE; c=11.0289; tBtwnC=0.067804; CMinF=29KHz
16. Wolfe_...us cinereus) ; 58%LACI; 42%EPFULANO; 0%MYLE; c=28.2111; tBtwnC=0.31736; CMinF=24KHz
17. Wolfe_...otis lebeii) ; 35%MYLE; 30%MYLU; 14%PIP; c=5.8813; tBtwnC=0.094748; CMinF=38KHz
18. Wolfe_...s lucifugus) ; 30%MYLU; 28%MYLE; 17%LABO; c=1.7222; tBtwnC=0.098568; CMinF=38KHz
19. Wolfe_...s lucifugus) ; 35%MYLU; 32%MYLE; 13%PIP; c=2.1506; tBtwnC=0.094272; CMinF=36KHz
20. Wolfe_...is lucifugus ; 35%MYLU; 32%MYLE; 12%MYSE; c=4.5652; tBtwnC=0.093824; CMinF=36KHz
21. Wolfe_...eeding buzz) ; 37%MYLE; 32%MYLU; 12%PIP; c=12.8683; tBtwnC=0.086592; CMinF=37KHz
22. Wolfe_...eeding buzz) ; 86%MYLE; 14%PIP; 0%LACI; c=87.6987; tBtwnC=0.093712; CMinF=47KHz
23. Myotis...search phase ; 64%MYSE; 18%MYLE; 7%LABO; c=49.9109; tBtwnC=0.077248; CMinF=35KHz
24. Pipist...search phase ; 37%PIP; 27%LABO; 18%MYLE; c=1.7171; tBtwnC=0.11568; CMinF=40KHz
25. L_bore...e-E4_09aug08 ; 29%LABO; 21%MYLU; 19%MYLE; c=9.9169; tBtwnC=0.13545; CMinF=37KHz
26. Lasiur...rus borealis ; 52%LABO; 15%MYLE; 12%MYLU; c=19.3817; tBtwnC=0.10257; CMinF=36KHz
27. Epfu_L...o-E3_04aug08 ; 92%EPFULANO; 51%LACI; 0%MYLE; c=112.6387; tBtwnC=0.10239; CMinF=27KHz
28. M_sept...e-E2_11aug08 ; 52%MYSE; 33%MYLU; 15%LABO; c=14.4439; tBtwnC=0.077345; CMinF=32KHz
ColtRd-T2_...s_67-70_ch_2 ; 33%MYLU; 29%MYLE; 15%PIP; c=6.6099; tBtwnC=0.09425; CMinF=35KHz
ColtRd-T2_...217-218_ch_2 ; 30%PIP; 30%LABO; 15%MYLU; c=0.5855; tBtwnC=0.21898; CMinF=37KHz
ColtRd-T2_...219-220_ch_1 ; 47%LABO; 15%MYLU; 15%MYLE; c=181.8004; tBtwnC=0.29079; CMinF=37KHz
ColtRd-T2_...807-812_ch_1 ; 25%MYLU; 25%PIP; 24%MYLE; c=0.2437; tBtwnC=0.090345; CMinF=37KHz
ColtRd-T2_...202-204_ch_3 ; 62%LABO; 20%MYLU; 18%MYSE; c=14.5202; tBtwnC=0.13445; CMinF=34KHz
ColtRd-T2_...203-205_ch_2 ; 65%LABO; 18%MYSE; 17%MYLU; c=32.288; tBtwnC=0.14946; CMinF=34KHz
Epfu_Lano_...e-E3_13aug08 ; 55%EPFULANO; 45%LACI; 0%MYLE; c=39.0301; tBtwnC=0.23849; CMinF=28KHz
Epfu_Lano_...o-E3_04aug08 ; 92%EPFULANO; 51%LACI; 0%MYLE; c=112.6387; tBtwnC=0.10239; CMinF=27KHz
Eptesicus ...search phase ; 62%EPFULANO; 38%LACI; 0%MYLE; c=3.6268; tBtwnC=0.077112; CMinF=30KHz
L_borealis...e-E4_09aug08 ; 27%LABO; 24%PIP; 20%MYLU; c=3.7714; tBtwnC=0.10738; CMinF=35KHz
L_borealis...e-E4_09aug08 ; 29%LABO; 21%MYLU; 19%MYLE; c=9.9169; tBtwnC=0.13545; CMinF=37KHz
L_cinereus...o-E4_29jul08 ; 52%LACI; 48%EPFULANO; 0%MYLE; c=1.2955; tBtwnC=0.20929; CMinF=24KHz
Lasiurus b...rus borealis ; 52%LABO; 15%MYLE; 12%MYLU; c=19.3817; tBtwnC=0.10257; CMinF=36KHz
Lasiurus c...search phase ; 53%LACI; 47%EPFULANO; 0%MYLE; c=0.30117; tBtwnC=0.21595; CMinF=19KHz
M_lucifugu...e-E2_11aug08 ; 33%MYLE; 28%MYLU; 18%PIP; c=8.8149; tBtwnC=0.10719; CMinF=38KHz
M_lucifugu...o-E2_05aug08 ; 27%MYLE; 26%MYLU; 25%PIP; c=0.33832; tBtwnC=0.10823; CMinF=40KHz
M_sep_2bat...12aug08_2008 ; 40%MYLE; 26%MYSE; 24%MYLU; c=22.0413; tBtwnC=0.0817; CMinF=41KHz
M_sep_Muri...o-E3_20aug08 ; 44%MYSE; 28%MYLE; 15%MYLU; c=19.2559; tBtwnC=0.083565; CMinF=40KHz
M_septentr...e-E2_11aug08 ; 52%MYSE; 33%MYLU; 15%LABO; c=14.4439; tBtwnC=0.077345; CMinF=32KHz

The code for displaying the data in the syntax shown above is as such:

disp([filename(1:10),'...',filename(end-15:end-4),' ; ',...
 num2str(round(SPECIES(strongest(1))*100)),'%', templates{strongest(1)},'; ',...
 num2str(round(SPECIES(strongest(2))*100)),'%', templates{strongest(2)},'; ',...
 num2str(round(SPECIES(strongest(3))*100)),'%', templates{strongest(3)},'; c=',...
 num2str(correctness), '; tBtwnC=', num2str(tBtwnCries),...
 '; CMinF=', num2str(round(CryMinFreq/1000)),'KHz'])

