
Vision-Enhanced Lidar Odometry and Mapping

Daniel Lawrence Lu

August 1, 2016

Submitted in partial fulfilment of
the requirements for the degree of

Master of Science

Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

CMU-RI-TR-16-34

Thesis committee
Prof. George Kantor
Prof. Michael Kaess

Ji Zhang

Abstract

Vision-Enhanced Lidar Odometry and Mapping (VELO) is a new algorithm for simulta-
neous localization and mapping using a set of cameras and a lidar. By tightly coupling
sparse visual odometry and lidar scanmatching, VELO is able to achieve reduced dri� er-
ror compared to using either one or the other method. Moreover, the algorithm is capa-
ble of functioningwhen either the lidar or the camera is blinded. Incremental Smoothing
and Mapping is used to refine the pose-graph, further improving accuracy. Experimen-
tal results obtained using the publicly available KITTI data set reveal that VELO achieves
around 1% translation error with respect to distance travelled, indicating it has compa-
rable performance to state-of-the-art vision- and lidar-based SLAMmethods.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 4
1.3 Contribution . 4
1.4 Notation . 5

2 Background 6
2.1 Lidar Motion Estimation . 6

2.1.1 Local point set registration . 7
2.1.2 Global point set registration . 9

2.2 Visual Odometry . 10
2.2.1 2D-2Dmatching . 11
2.2.2 3D-2Dmatching . 12
2.2.3 3D-3Dmatching . 12

2.3 Sensor Fusion . 13
2.4 Pose-Graph Optimization . 14

2.4.1 Loop closure detection . 14
2.5 Relation to My Work . 15

3 Overview of Method 17
3.1 Extraction of Visual Features . 17
3.2 Feature Tracking and Descriptor Matching 17
3.3 Camera Projection . 19
3.4 Feature Depth Association . 20

4 Front End: Frame-to-FrameMotion Estimation 23
4.1 3D-3D Matching . 23
4.2 3D-2D Matching . 23
4.3 2D-2D Matching . 24
4.4 Point Set Registration . 25
4.5 Optimization Strategy . 25
4.6 Triangulation of Features . 28

ii

5 Back End: Loop Closure and Pose-Graph Optimization 29

6 Implementation 31
6.1 Time Complexity . 32
6.2 Experimental Performance . 34

7 Evaluation 35
7.1 Front End Dead Reckoning Performance 35
7.2 Full Closed Loop Performance . 37
7.3 Discussion . 39

8 Conclusion 41
8.1 Future Work . 41

9 Acknowledgements 43

iii

1 Introduction

If we could first knowwhere we are, and
whither we are tending, we could then
better judge what to do, and how to do it.

Abraham Lincoln (1858)

1.1 Motivation

Mobile robots and autonomous vehicles are poised to become a central part of our ev-
eryday lives. Self-driving cars can improve quality of life by preventing accidents and by
freeing up time spent commuting. Unmannedmobile robots o�er unprecedented utility
in all manner of applications. Robots can explore remote or hazardous areas, transport
goods, or performmanual labour such as cleaning, farming, and construction.

In order to navigate and to perform any task, an autonomousmobile robotmust first
be able to determine its own position and orientation (together, the pose) with respect
to its surroundings. This problem is known as ego pose estimation or localization.

If there isnoprior knowledgeof theenvironment, theproblemappears tobeachicken-
and-egg problem. Without amap, one cannot knowwhere one is; without knowing one’s
location, it seemsdi�icult to build amap. The paradox is resolved by simultaneous local-
ization andmapping (SLAM). The history of robotics is richwith di�erent SLAM strategies
using a variety of di�erent sensors. This thesis builds uponwork in this area by contribut-
ing a newmethod using vision and lidar which improves upon the state-of-the-art.

The camera and the lidar (light radar) are sensors with complementary properties. A
camera takes images with high angular resolution and reliable intensity measurements,
but doesnot provide any range information. Multiple cameras (stereo vision) canprovide
range information by triangulation, but the quality of the range measurement deterio-
rates rapidly as range increases.

A lidar is a range-and-bearing sensor whichmeasures range in any direction by send-
ing pulses of infrared light using lasers and timing the reflection. By rotating one ormore
lasers and performing measurements rapidly, a 3D point cloud of the surroundings is
generated. A typical modern lidar suitable for mobile robots provides accurate range in-
formationup to 150mando�ena360◦ field of view, but only at pointswhichare sampled
with sparse andpossibly uneven angular resolution. Surveying lidarsmaybe able to pro-

1

duce dense angular resolution, but do not have su�icient acquisition rate to be used in a
mobile setting.

Whereas a camera is a passive sensor sensitive to ambient lighting conditions and
incapable of functioning in darkness, a lidar works in most lighting conditions including
complete darkness, as it emits its own light. Conversely a lidar is slightly less reliable in
strong daylight when ambient light may overpower its lasers. Also, lidar data tends to
have holes at regions beyond the maximum range and on dark or specular surfaces.

The strengths of each sensor may be used to compensate for the weaknesses of the
other when the two are combined in an e�ective way. Ideally, we would like the cam-
era’s dense angular resolution to compensate for the sparsity of the lidar, and the accu-
rate range information of the lidar to resolve the ambiguity in camera depth perception.
Moreover, a visual-lidar system should perform well even when either one sensor fails.
For example, in addition to failure in darkness, a vision-based system may struggle in a
featureless environment such as anovercast daywith snowon the ground,where it is dif-
ficult to determine scene geometry by vision alone as the colour is the same regardless of
surface normal. On the other hand, a lidar approach that depends on aligning geometric
point clouds may fail in geometrically degenerate scenes such as a straight tunnel, even
though a cameramay be able to pick up visual cues on the tunnel walls to help localize.

Figure 1: Degenerate situations. On the le�, the scene is visually rich but geometrically symmet-
ric, making it di�icult to estimate pose by aligning lidar point clouds. On the right, the scene is
visually featureless, even though the snow-covered parked cars are obstacles easily detected us-
ing lidar. (Image credit: Le�, Thomas Wolf, CC-By-SA 3.0 Unported license; Right, Anna Kucsma,
CC-By-SA 2.5 Generic license)

An alternative to the lidar is the radar, which uses radio waves instead of light pulses.
Radar has the advantages of being cheap and impervious to weather conditions such as
rain, snow, and fog which may obscure vision. However, the fidelity of radar in both the

2

https://commons.wikimedia.org/wiki/File:Alter_Elbtunnel_Hamburg_menschenleer.jpg
https://commons.wikimedia.org/wiki/File:Snow_on_Second_Street.jpg
https://commons.wikimedia.org/wiki/File:Snow_on_Second_Street.jpg

angular and range direction is extremely poor compared to lidar. Consequently radar is
usually employed in obstacle detection rather than pose estimation. Sonar is another al-
ternative sensor, using soundwaves insteadof radioor lightwaves. The fidelityof sonar is
evenpoorer, so sonar as aprimary sensor is usually relegated toapplicationswhere radar
and light are severely attenuated, such as undersea exploration. This notwithstanding,
the low cost of ultrasonic range sensors means that such sensors can be found as obsta-
cle detection sensors on terrestrial vehicles as well.

Apart from using cameras and range sensors, other sensorsmay be used for localiza-
tion. The Global Positioning System (GPS) is a widely available constellation of satellites
used for geolocation by multilateration. However, urban, mountainous, underground,
forested, or extraterrestrial environments su�er from degraded or inaccessible GPS sig-
nals. Moreover, civilian GPS systems tend to have poor accuracy and update rate, and
cannot usually be used to determine orientation.

An inertialmeasurement unit (IMU) is another popular sensor for localization. Itmea-
sures linear acceleration and rate of rotation, which are integrated to provide an estimate
of pose over time. Dead reckoning using an IMU is prone to more dri� over time com-
pared to other methods, as biases in the sensor accumulate quadratically. In addition,
dead reckoning systems cannot construct amapof the environment to perform loop clo-
sure when revisiting known areas, or to localize when the robot has been unexpectedly
moved. As such, inertial navigation systems tend to be integrated with other sensors.

To obtain the best possible pose estimate, it is desirable to construct a pose estima-
tion system that does not fully rely on either the GPS or the IMU. The general problem
of pose estimation using cameras integratedwith range sensors is known as RGB-D pose
estimation, as a camera typically produces colour data in the red, green, and blue chan-
nels (RGB) and the range sensor provides depth (D). Confusingly, the term “RGB-D” is
sometimes used even if the camera is monochrome.

RGB-D pose estimation has been widely studied for visual-lidar systems as well as
other sensors, such as time-of-flight cameras and structured light systems like the Mi-
croso� Kinect. Compared to these alternative range sensors, lidar tends to have greater
range and performmore accurately and reliably in outdoor environments.

3

1.2 Problem Statement

Given a sequence of images provided by one or more cameras and a sequence of point
clouds generated by one or more lidars synchronized with respect to the cameras, the
objective is to recover the pose of the robot in 6 degrees of freedom in each frame, with
respect to its initial pose, without using a prior map. A secondary objective is to create a
globally consistent 3Dmodel of the perceived environment.

It is assumed that the environment is mostly static. Furthermore, it is assumed that
the extrinsic calibration between the lidar and the cameras, as well as the intrinsic cali-
bration within said lidar and cameras are known with high accuracy.

We note that the lidar point cloudsmay be distorted due to themotion of the vehicle
while the lidar sensor is scanning. Although it is possible for some algorithms to remove
this distortion [65], for the purpose of this thesis, we assume that such distortion has
been mostly removed by a preprocessing step using an external pose source such as an
inertial measurement unit. Further discussion to compensate for motion distortion is
presented in section 8.1.

1.3 Contribution

I present a new pose estimation algorithm named Vision-Enhanced Lidar Odometry and
Mapping (VELO). VELO tightly couples sparse visual odometry and lidar scanmatching in
a single optimization problem. As a natural consequence, VELO is capable of functioning
if either the cameras or the lidar is completely disabled, and naturally takes advantage
of the full field of view of both the lidar and the cameras.

A new feature tracking pipeline is proposed which combines Lucas-Kanade-Tomasi
sparse feature tracking with fast retina keypoint descriptors to reject outliers. A new
method is proposed to associate 2D keypoints detected in camera images with 3D po-
sition in the lidar point cloud.

Experiments with the public data set KITTI as well as our own data demonstrate the
performance of VELO compared with the state of the art.

Real time performance is not a priority for the purposes of this thesis, however, a
discussion of running time and e�iciency considerations is presented. It is anticipated
that, in the near future, computers will be able to run this algorithm in real time.

4

1.4 Notation

Unless otherwise specified, vectors are typeset in bold italic, e.g. V orv, scalars are non-
bold italic, e.g. k, and matrices are bold non-italic, e.g. M. Sets are denoted in calli-
graphic, such as S . A 3D point in space is written bold italic uppercase, e.g. P , and its
2D projection is written in bold italic lowercase, e.g. p. The 3× 3 skew-symmetricmatrix
representation of the cross product by a 3× 1 vector t is denoted as [t]×.

The coordinate frame associated with a cameraC is denoted in braces, i.e. {C}. The
coordinate frameorigin is centered on camera 0. The choice of coordinate system is such
that, with respect to the vehicle, the z direction points forward, the y direction points
downward, and the x direction points rightward.

5

2 Background

Themachine does not isolate us from the
great problems of nature but plunges us
more deeply into them.

Antoine de Saint-Exupéry
Terre des Hommes (1939)

Pose estimation systems can generally be separated into the front end and the back
end. The frontend, also referred toasodometry ormotionestimation, involvesestimating
the relative spatial transformation between two frames. Methods to do this using range-
and-bearing sensors suchas lidararedescribed in section2.1 andmethodsusingcameras
are described in section 2.2. Then, methods that combine the two sensors are discussed
in section 2.3.

Although dead reckoning using frame-to-frame motion provides a good local esti-
mate of the trajectory that the robot has taken, the gradual accumulation of error over
time causes inconsistencies if the robot revisits a previously seen area. The back end
of pose estimation resolves these inconsistencies to construct a globally consistent map
from frame-to-framemeasurements. These methods are discussed in section 2.4.

2.1 Lidar Motion Estimation

Lidarmotion estimation refers to finding the relative spatial transformationbetween two
frames, based on lidar data collected at those frames. Such techniques typically treat
the data as sets of 3D points, also known as point clouds. The transformation between
two frames is found by aligning the two point clouds using point set registration, also
known in some cases as scan matching or point matching. LetM and S be two sets
of 3D points: the moving “model” and the static “scene” respectively. Then, point set
registration seeks to minimize dist(T (M),S) where T is a transformation, and dist is
somedistancemetric. Here,weareusually concernedwithonly6degreeof freedomrigid
transformations in SE(3), although we point out more complicated parametrizations of
transformations may be needed to account for such e�ects as motion distortion.

Two typesofpoint set registrationalgorithmsexist: local ones that assignpoint corre-
spondences by proximity, and global ones that establish point correspondences by con-
structing unique feature descriptors invariant with respect to translation and rotation.

6

2.1.1 Local point set registration

Themost widely known algorithm for point set registration is iterative closest point (ICP)
[5][11]. The algorithm operates in two steps: first, every point inM is assumed to corre-
spond to its closest point in S , and second, the sum of squared Euclidean distances be-
tween correspondingpairs of points isminimized through least squares. These two steps
are repeated until convergence. To find the closest point, a KD-tree is a data structure
which can be constructed from the points in S , allowing the closest point to be queried
in logarithmic time [49].

A primary drawback of ICP is that the assumption that each point corresponds to the
nearest one can only hold when initial alignment is already very good. Consequently, it
is prone to getting stuck in a local optimum, and it is highly sensitive to noise and out-
liers. To address these issues, a plurality of ICP variants have been proposed, changing
every phase of the algorithm: point correspondence, transformation parametrization,
cost function, and optimization strategy.

Instead of hard correspondences, that is, associating each point inM to a single
point inS , so�correspondencesmaybeused,whereeachpoint inMhasaweightedcor-
respondence tomultiple points in S . One probabilistic approach to so� correspondence
is to assume that each point in S is identically distributed according to a Gaussian distri-
bution. While treating S as a Gaussian mixture model, the likelihood of sampling points
T (M) from this Gausian mixture model is maximized. In this sense, the algorithm is an
expectation-maximization (EM) algorithm: the expectation step is equivalent to finding
so� correspondences by evaluating the Gaussians at the points in T (M), and the max-
imization step finds the transformation that maximizes the likelihood. Such algorithms
typically include an annealing scheme that gradually decreases the variance of theGaus-
sians as the iteration proceeds: this is so that the algorithm is robust against noise and
outliers at the beginning, but converges to an accurate result. EM-ICP [21] and coherent
point dri� (CPD) [43] are such algorithms. Instead of so� correspondenceswith Gaussian
probability, other methods such as So�assign may be used, as in robust point matching
[12].

Even with so� correspondences, minimizing point-to-point distance is prone to mis-
alignmentswhenusedwith scanning lidars thathavenonuniformangular resolution. For
example, a typical lidarwithanarrayof lasers spinning inoneaxismayhavemuchgreater
resolution in the azimuth direction as opposed to the altitude direction. This produces

7

artifacts such as rings on the ground that can bias a point set registration algorithm. One
solution is to assume the scene to be locally planar. For every point inM, a plane is fit
to a small neighbourhood of points in S , and the point-to-plane distance is minimized
[11]. More generally, instead of a plane, amultivariate Gaussianmay be fit to such a small
neighbourhood around the corresponding point, such as in generalized ICP [52]. To fur-
ther remove the e�ect of uneven lidar points, the normal distributions transform (NDT)
[6][38] divides the space into a voxel grid and fits a multivariate Gaussian to each grid
cell. Clustering algorithms such as in segmented greedy cluster NDT are an alternative to
a voxel grid [15].

Instead of only treating S as a probability distribution andmaximizing the likelihood
of observing points inM, one may treat both point sets as being probability distribu-
tions, and then minimize the distance between these two distributions. The choice of
distance metric between two distributions includes L2 distance and Kullback-Leibler di-
vergence. Such methods include kernel correlation [60] which aligns distance between
various kernel mixture models using gradient descent, the method of Jian and Vemuri
[27] that provides a closed form solution to minimize L2 distance between mixtures of
spherical Gaussians, and distribution-to-distribution (D2D) NDT [56] whichminimizes L2
distancebetweengeneralmultivariateGaussians (computed in cells of a voxel grid) using
gradient descent.

In addition to minimizing geometric spatial distance, the distance in feature space
may also be minimized. For example, if colour is available, then three channel colour
may be combined with 3D spatial distance to form a 6Dminimization metric [28]. Other
features include the normal direction and the feature descriptors discussed in the next
section.

The transformation of a point setmay beparametrized inmanyways. Usually, we are
concerned only with the 6 degree of freedom rigid transformation in SE(3). However, in
some cases, non-rigid transformations are needed. In such cases, thin plate splines can
be used [12]. When the lidar is in motion, there can be motion distortion as the points
in the point set are perceived at di�erent times. In lidar odometry and mapping (LOAM)
[65], a linear interpolation is used to determine the transformation in between the start
and the end of a scan.

Having established the cost function, several optimization schemes have been pro-
posed. In the simplest case for ICP [5] as well as more advanced variants like CPD [43],
the rigid transformation is found in closed form: the rotation can be found using singular

8

value decomposition and the translation is simply the mean translation. For additional
robustness, ICP can be adapted to the Levenberg–Marquardt algorithm to form LM-ICP
[17]. The Levenberg–Marquardt algorithm is also used in LOAM [65]. For distribution-to-
distribution methods like kernel correlation [60] or D2D NDT [56], gradient descent with
various line search strategies may be used.

If the goal is to register scans fromconsecutive time steps in amoving vehicle, certain
physical constraints can be added to the cost function to improve convergence, such as
smoothness of motion and the gravity direction [67].

2.1.2 Global point set registration

Local point set registration algorithms are prone to getting stuck in local optima if the
initialization is poor or if the data is noisy. One way to adapt a local point set registration
algorithm to achieve global optimality is through branch-and bound scheme, such as in
Globally Optimal ICP [63], or stochastic optimization such as genetic algorithms, particle
swarmoptimization, particle filtering, randomsample consensus, and simulatedanneal-
ing. Another way is to engineer unique shape feature descriptors.

Feature engineering to globally register point sets can be divided into those that ap-
ply to the entire point set, or those that apply to specific interest points within the point
set. The former category includes spin images [29] that directly align point clouds, NDT
histograms [38] that are used to find relative rotation between two point clouds.

The latter category assigns a descriptor to certain interest points in a way that is
invariant with respect to translation and rotation. These descriptors are designed to
uniquely specify the geometry of a small neighbourhoodaround the interest point. Point
correspondences are then found by matching interest points that have similar descrip-
tors.

Interest point descriptors for point clouds include two general approaches: using a
2D depth map, or general point cloud. Depth map approaches include normal aligned
radial feature (NARF) [55] and curvelet features [2]. These assume that the point cloud
has been captured from a single viewpoint, and that range data is dense. As such, they
may not perform well for a moving lidar which has sparse angular resolution. Feature-
basedglobal registrationusinggeneral point clouds include fast point featurehistograms
(FPFH) [50] and integral volumedescriptors (IVD) [20]. FPFHconsists of computing statis-
tics about a point’s neighbours’ relative positions and estimated surface normals. IVD

9

relies on finding the proportion of a small sphere around a point being occupied by the
object’s volume, by means of ray shooting in a voxel grid. However, these are relatively
slow to compute, and also do not perform reliably for sparse point clouds.

Having established point correspondences using the feature descriptors, the trans-
formation can be found in the same way as described in the previous section. The only
di�erence is that point correspondences have been established using features instead
of proximity. Three point correspondences are su�icient to recover the transformation.
Typically, there are many outliers, so a random sample consensus (RANSAC) approach
is used [50]. Localization accuracy of interest points is usually poor, so a local point set
registration algorithm such as ICP is o�en needed as a postprocessing step to improve
alignment [50] [20].

2.2 Visual Odometry

Visual odometry refers to methods that primarily rely on one or more cameras to re-
cover the relative transformation between two frames. These can generally be classified
as “dense” methods that reason about photometric error over all pixels the entire im-
age, or “sparse” methods that track a relatively small set of interest points, or features.
Compared to dense methods, sparse methods have a few drawbacks: tracking features
may not be reliable as objects appear di�erently when viewed from di�erent angles; the
vast majority of the image data is not used; the environment can only be sparsely recon-
structed. However, sparse systems have been studied for much longer, are o�en able to
function better than dense methods when relative transformation between two frames
is large, and can bemore computationally e�icient.

Amainwork for densemonocular visual odometry is large-scale direct simultaneous
localization and mapping (LSD SLAM) [16]. When depth data is available, there are more
methods such as ElasticFusion [62]. Very recently, deep machine learning techniques
such as convolutional neural networks have also been applied to visual odometry by
learning a direct mapping from an image to the six degree of freedom transformation
[13].

In contrast to the relatively recentwork ondense visual odometry,manymethods for
tracking visual features for sparse algorithms in computer vision have been proposed in
past decades. In section 2.1.2 we have seen severalmethods for constructing point cloud
features at interest points. Compared to these, visual features are more mature and re-

10

liable. To extract features, interest points are detected in the image. Then, to associate
features across di�erent frames, a unique descriptor of each feature is constructed, in a
way that is mostly invariant with respect to translation, rotation, scale, and illumination,
and also robust against noise. Algorithms to detect interest points include theHarris cor-
ner [23] and the Shi–Tomasi “Good Features To Track” [53].

Many techniquesexist for constructing featuredescriptors. Thesealmostalwayshave
creative acronyms, including scale-invariant feature transform (SIFT) [36], speeded-up
robust features (SURF) [4], binary robust invariant scalable keypoints (BRISK) [34], fea-
tures from accelerated segment test (FAST) [47], binary robust independent elementary
features (BRIEF) [9], oriented FAST and rotated BRIEF (ORB) [48], fast retina keypoint
(FREAK) [3] and so on. They each have di�erent trade-o�s between computational ef-
ficiency and accuracy [39]. Some of these methods, such as SIFT and SURF, also include
methods for detecting interest points. In general, modern binary features such as BRISK,
ORB, and FREAK are orders of magnitude faster to compute than older, histogram-based
features such as SIFT. Recall performance of these binary features is generally on par or
better than SIFT-like features for the purpose of visual odometry as consecutive frames
are very similar in appearance, although modern variants of SIFT-like features may be
more robust under wildly di�erent lighting, scale, and rotation.

Alternatively, if the motion is small, then interest points can be tracked using optical
flowwithout having to compute their descriptors. A well-knownmethod to do this is the
Lucas–Kanade–Tomasi tracking [37][58][53]. A notable variant of LKT optical flow is the
addition of an image pyramid, improving the e�iciency and robustness for somewhat
larger translations [7].

Having established point correspondences using the feature descriptors, di�erent al-
gorithms can be used to recover pose between two frames, depending on whether the
depth data is known in one or both of the frames. Suchmethods are covered in depth in
Multiple View Geometry [24].

2.2.1 2D-2Dmatching

When there are 2D features tracked across two di�erent frames without depth data, the
task of recovering the relative transformation is called 2D-2D matching. Algorithms that
perform pose estimation using purely 2D-2D matching are known as monocular visual
odometry, as a single camera has no depth data. In this case, rotation can be recovered

11

absolutely, but the translation is only determined up to scale. As such, a purelymonocu-
lar approach is not su�icient to perform full pose estimation, unless there is prior knowl-
edge about the contents of the scene.

In general, point correspondences in a scene viewed from two cameras are related
by the fundamental matrix [24], fromwhich it is possible to extract two possible rotation
matrices and the normalized translation vector. When the camera intrinsic calibration is
known, they are related by the essential matrix [24]. Five pairs of point correspondences
are su�icient to recover the essential matrix. This is known as the five-point algorithm
[44],which is apopularmethod for2D-2Dmatching. Theadvantageofusingas fewpoints
as possible is that RANSAC takes fewer samples on average to reach consensus.

2.2.2 3D-2Dmatching

O�en, 3D positions of features in one frame is known. This can happen when 3D points
are triangulated frompast observations throughbundle adjustment, or fromstereo cam-
eras, or using an external range sensor such as a lidar. When 2D projections of these
known3Dpoints areobserved ina second frame, the taskof recovering the relative trans-
formation is called 3D-2Dmatching, or perspective n-point (PnP) [24].

Apopular algorithm forPnP is ePnP,which runs in linear timecomplexitywith respect
to the number of points [33].

When therearemanyoutliers, RANSACcanbeused. Aswith2D-2D,using fewerpoints
is advantageous as fewer RANSAC iterations are needed on average to reach consensus.
However, when using too few points, the solutions may be ambiguous.

Theminimal form of PnP is P3P. When using three points, there are at most four pos-
sible solutions. A plurality of P3P algorithms have been proposed [18]. In practice, a
fourth correspondence is o�en used to resolve ambiguity. Numerous other algorithms
have been proposed, using 4, 5, 6, ormore points [26]. With six points, there are 12 linear
equations, guaranteeing a unique solution as all 9 elements of the rotation matrix and 3
elements of the translation vector can be determined.

2.2.3 3D-3Dmatching

When the 3D positions of features in both frames are known (for example, if an RGB-D
sensor is used), the problembecomes identical to global point set registration discussed
in section 2.1.2. Typically, RANSAC can be used along with a closed form solution for the

12

transformation. The main advantage over a purely lidar method is that visual features
tend to bemuchmore reliable and fast to compute than point cloud features.

Note that in the case of stereo visual odometry, depth from stereo triangulation is
generally considered unreliable, so 3D-3D matching is not usually used in that case. In-
stead, minimizing reprojection error in 3D-2Dmatching is typically used.

2.3 Sensor Fusion

When combining multiple sensors, there are two main concepts: recursive filtering and
batchoptimization [35]. The filtering approach recursively updates the state probabilisti-
cally usingonly the latest observations fromthe sensors, o�enusingoneof them for state
propagation and the others for updates. Examples include the Kalman filter, its variants,
and the particle filter. The batch optimization approachmaintains a history of sensor ob-
servations and simultaneously performs a nonlinear optimization over the past states to
give the most likely explanation of said observations. Batch optimization is more com-
putationally intensive but produces more accurate results.

Strategies to combinemultiplemethods can further be classified as either loose cou-
pling or tight coupling. The loosely coupled approach independently uses each method
and then fuses them in a subsequent step: for example, it might use onemethod to pre-
process another sensor’s output, or to initialize a second method. The tightly coupled
approach includes all measurements in a common problem where all states are jointly
estimated. In general, a tightly coupled approach is more accurate than a loosely cou-
pled one, but more computationally intensive. Then again, the accuracy improvement
from tight coupling may not be significant if one method is significantly better than the
other.

Themethodof RGB-DmappingbyHenry et al [25] tightly couples the 3D-3Dmatching
fromsparsevisual featureswith ICP fordepthpointswithunknowncorrespondence. This
method does not use camera data where depth is unavailable.

Depth-enhancedmonocular odometry (DEMO) by Zhang et al [64] tightly couples the
2D-2D epipolar constraint as well as 3D-2D reprojection errors in a single cost function to
estimate the frame-to-frame tranformation. It is able to outperformpurely 3D-2Dmatch-
ingmethods aswell as purely 3D-3Dmethodsbyutilizing cameradata outside of the field
of view of the lidar. However, it cannot utilize lidar data outside of the field of view of the
camera.

13

Visual-lidarodometryandmapping (V-LOAM)byZhangetal [66] loosely couplesDEMO
[64] and LOAM [65] by using the former to mitigate motion distortion in lidar data, and
subsequently using the latter which further removesmotion distortionwhile performing
point set registration. As a consequence of the loose coupling, the accuracy is ultimately
primarily limitedby the lidar and is lessa�ectedbyuncertainty in thecalibrationbetween
the lidar and camera.

2.4 Pose-Graph Optimization

The pose-graph is a representation of the robot’s trajectory over time and the measure-
ments observed between di�erent points on this trajectory. Each vertex in the graph is a
pose such as the pose of the robot at a di�erent time, or a landmark. Edges represent
constraints, such as a relative transformation between two frames found through the
pose estimation frontend. Given these constraints, a large batch nonlinear optimization
is used determine the robot’s trajectory and poses of all relevant landmarks to optimally
satisfy all of the constraints. Although the problem has many variables, it has a sparse
structure, allowing e�icient algorithms to perform this optimization.

Incremental Smoothing and Mapping [30] provides an e�icient and exact solution
which takes advantage of the sparsity of pose-graphs as well as the incremental nature
of SLAM. It updates a QR factorization of the information matrix, and avoids recalculat-
ing parts of the system that do not change. The g2o library [32] and Ceres Solver [1] are
both so�ware suites that implement optimization techniques to e�iciently solve sparse
systems.

Bundle adjustment is a special case of pose-graph, where the positions of landmarks
observed using cameras are estimated along with robot poses. A landmark is usually a
sparse visual featurewhich has been observed in several frames. Bundle adjustment has
been used in photogrammetry for a long time [59]. In computer vision, it is o�en used for
structure frommotion.

2.4.1 Loop closure detection

Whenusingapose-graph representation, a challengingproblem is todiscover edges con-
necting a current vertex to a past vertex. Returning to a previously encountered location
is known as loop closure. Naively, onemay attempt to run pose estimation front end be-
tween the current vertex and every past vertex to see if theymatch. Unfortunately, this is

14

prohibitively expensive and increases quadratically with time. A simpler approach is to
only attempt loop closure between vertices close together. However, this does not work
if odometry has dri�ed significantly. In the past, many researchers have simply resorted
to manually tagging loop closures.

Several methods have been proposed to capture the scene in a compact representa-
tion so that it is easy to check whether the robot has been to the same place before.

In lidar-based methods, a histogram of point cloud normals in the normal distribu-
tions method [56] may be used as a unique scene descriptor for accomplishing loop clo-
sure.

For visual SLAM methods, appearance-based methods are typically used. In ORB-
SLAM [42], a bag-of-words approach is used to determine if a camera image is similar to
a previously seen image.

2.5 Relation to MyWork

Figure 2: Venn diagram of available data for frame-to-frame pose estimation between
frames k and k − 1, and possible strategies. Refer to table 1.

My work, VELO, combines 2D-2D matching, 3D-2D matching, 3D-3D matching, and
local point set registration in a deeply coupled fashion. It can be considered the deep
coupling of [25] and [64]. Compared to [64],mymethod is able to utilize purely lidar data

15

Region
(figure 2) VELO DEMO [64] LOAM [65] V-LOAM [66] RGB-Dm. [25]

A 2D-2D 2D-2D - 2D-2D -
B 3D-2D 3D-2D - 3D-2D 3D-2D
C 2D-3D - - - 2D-3D
D 3D-3D, ICP p2P 3D-2D LOAM LOAM 3D-3D, ICP
E, F ICP p2P - LOAM LOAM ICP
G ICP p2P - LOAM LOAM -

Table 1: Strategies for frame-to-framemotionestimationusedbymymethod, VELO, com-
pared to DEMO [64], LOAM [65], V-LOAM [66], and RGB-D mapping [25]. Refer to regions
from figure2. ICPp2P refers topoint-to-plane iterative closestpoint. The ICPvariantused
by LOAM [65] and V-LOAM [66], written as LOAM in the table, first identifies reliable points
in the point cloud and then uses either point-to-line or point-to-plane, while account-
ing for lidar motion distortion by assuming a linear interpolation. Here, 3D-2Dmatching
refers to matching 3D points from frame k to 2D points in frame k − 1 and 2D-3D refers
to 3D points from k − 1 and 2D points from k. In [25], the sensor does not produce data
in region G.

in the case that few or no visual features are available. Compared to [25], my method is
able to utilize mainly the camera in the case that lidar data is unavailable or degenerate.

Whereas [64], [65], and [66] do not perform loop closure, mymethod does, similar to
[25].

16

3 Overview of Method

3.1 Extraction of Visual Features

Mymethod employs sparse visual odometry, which depends on point correspondences
between images. Point correspondences are found in two steps: first, features are de-
tected, and second, correspondences are found between them. The quality of visual fea-
tures has a large impact on the quality of the pose estimation pipeline. The proposed
method uses Good Features To Track [53] to detect features.

The GFTT feature detection routine is briefly described here. For a point p = [u, v] in
the image I , define the 2× 2matrixZ:

Z =

[
I2
u IuIv

IuIv I2
v

]
(1)

where thenumericgradientof the image is∇I(p) = [Iu, Iv]
T . Letλ1, λ2 be theeigen-

values ofZ. Two small eigenvalues indicate that the intensity profile in the region is con-
stant. A large and a small suggest the texture is unidirectional, permitting good tracking
in one direction but not the other. If both eigenvalues are large, the pattern at p is above
the noise level in both directions, allowing the point to be tracked accurately. Hence, a
good feature to track must have both eigenvalues to be above a threshold λ.

It is preferable for the features to be distributed approximately uniformly within the
image in order to achieve consistent visual odometry performance. Intuitively, little in-
formation is gainedwhen usingmultiple features close together, compared to using only
a single feature. To spread the features evenly within the image, a minimum distance d
between features is enforced. Features are detected greedily: Form iterations, the pixel
p with the maximum scoremin(λ1, λ2) > λ is selected such that ‖p − q‖ < d for each
previously selected feature q. A grid of size d is used to e�iciently check if a candidate
feature is within a previously selected one, as only up to two previously selected features
can exist in any given grid cell. The parameter λ is chosen to be some fraction (typically
0.01) of the score of the best feature.

3.2 Feature Tracking and Descriptor Matching

In VELO, two strategies are used to assign correspondences between keypoints: optical
flow and binary descriptormatching. For consecutive frames t and t−1, the relativemo-

17

Figure 3: Feature tracking in frames t − 1, t, t + 1. Squares are camera images, arrows
are tracked features using LKT sparse optical flow. If a feature is tracked from multiple
images, the geometric median of the feature’s position is used.

tion between the images is small. In this case, a pyramidal implementation of the Lucas–
Kanade optical flow tracking is used [7]. Optical flow tracking assumes that the motion
of a point seen by a camera is linearly related to the change in intensity and the local
gradient at that point. As such, it is e�ective when the motion is su�iciently small that
the appearance at the point is locally smooth. The pyramid approach uses successively
downscaled images, so that, for larger motions, the linear assumption holds at coarser
levels of the pyramid. Then, the tracked point’s location is successively refined using the
finer pyramid levels.

However, optical flow tracking tends to result in outliers in regions with complex tex-
tures and near the edge of the frame where a feature moving out of the frame cannot
be found. To combat outliers, we require a tracked feature to be associated not only be-
tween di�erent frames, but also between di�erent cameras (i.e. stereo correspondence).
At a frame t, for a camera c, a feature is tracked using optical flow fromall camera images
at frame t − 1. Moreover, if c > 0, the feature is also tracked from camera 0 at frame t.
Where there are nc cameras, this can result in up to nc + 1 candidate positions for each
feature. The feature’s final position is set to be the geometric median of these nc + 1

hypotheses. The geometric median is robust against outliers by minimizing the sum of
distances to the nc + 1 points, and is e�iciently calculated using Weiszfeld’s algorithm
[61].

By tracking features between cameras using optical flow instead of more conven-
tional sliding-window approaches to stereo correspondence, it is agnostic with respect
to incorrect calibration (as pointed out in [14]), and also works even when the cameras

18

are rotated or have di�erent distortion parameters.
Anotherweakness of optical flow is that a trackedpoint slowlydri�s over time. A�er a

few frames, it loses coincidencewith the initial real-worldpointbeing tracked. To remove
this e�ect, the Fast Retina Keypoint (FREAK) feature descriptor [3] is computed for each
feature point. The original descriptor of a tracked feature is stored, and if the descriptor
computed at a newly tracked position is su�iciently di�erent, the feature is considered
to be expired and removed. Compared to other feature descriptors, FREAK is very fast,
and relatively robust and accurate when used in visual odometry.

Computing the FREAK descriptors also allows points to be associated when the rela-
tive pose between frames is large. This occurs during loop closures.

3.3 Camera Projection

For this thesis, a typical pinhole camera model is used [24]. Generally, a 3 × 4 projec-
tion matrixC relates a 3D point in homogeneous coordinates P = [x, y, z, 1]T to its 2D
projection matrix p = [u, v, 1]T ,

p ≡ CP (2)

In the following sections we shall consider the camera to be calibrated such that its
projection matrix which projects a 3D point to canonical camera coordinates is [I|0]. If
the physical projectionmatrix is [K|0]whereK is the 3×3 intrinsictmatrix, then a point
pp in pixel coordinates is related to thepointpc in canonical coordinates bypc = K−1pp.

When there are multiple cameras, all cameras except camera 0 are translated with
respect to the coordinate frame. Consequently the assumption that the projection ma-
trix is [I|0] no longer holds. Suppose our o�set calibrated camera has a 3 × 4 physical
projection matrix of the form:

C =
[
K|tk

]
(3)

where tk is a 3× 1 vector. We can isolate the extrinsic translation te by noting

te = K−1tk. (4)

Then, wemay write the projection matrix as

C = K[I|te]. (5)

19

Note that any rotation in the extrinsic calibration may be absorbed into the intrin-
sic matrixK. Suppose the transformation between two frames {Cm0 } and {Cs0} is Ts

m

consisting of rotationR and translation t:

Ts
m =

[
R t

01×3 1

]
(6)

whereR is a 3× 3 rotation matrix and t is a 3× 1 translation vector.
Then the transformationTs

m
′ of the o�set camera c 6= 0 between frames {Cmc } and

{Csc} is:

Ts
m
′ =

[
I te

0 1

]
Ts
m

[
I te

0 1

]−1

=

[
R t−Rte + te

0 1

]
. (7)

This fact is used when implementing frame-to-framemotion estimation for multiple
cameras in section 4, as the visual odometry algorithms operate within the canonical
coordinate frame of each camera independently.

3.4 Feature Depth Association

For each visual feature, its depth is found using lidar points if possible. Two key chal-
lenges exist: first, the lidar points are sparse andmay not cover thewhole frame; second,
parallax between the camera and the lidar can cause some lidar points to be occluded
from the camera’s perspective.

To overcome sparsity, it is necessary to interpolate between the nearest lidar points
projected into the camera image. In depth-enhancedmonocular odometry (DEMO) [64],
a 2D KD-tree is constructed to query for the three closest lidar points, forming a planar
interpolation. A drawback is that the triangle formed from these three points may be
degenerate (if the points are nearly collinear) and does not always contain the feature
point.

Another common way to interpolate between sparse point data is to construct a De-
launay triangulation. The triangulation can be e�iciently computed in either in the pla-
nar camera frame, or in spherical geometry [10]. Then, a fast point location algorithm
such as [40] queries the triangle containing the feature point. This has the advantage
that the triangle always contains the query point, and is therefore more accurate. Both
constructing aKD-tree and aDelaunay triangulation are possible inO(n log n) time com-
plexity, and querying each point is possible inO(log n) time complexity.

20

Figure 4: Depth association using three methods. From le� to right: my method; finding the
three nearest points using a KD-tree; point location within a Delaunay triangulation. Red points
are projected lidar points. The green point is the 2D feature.

Figure 5: Example of depth association using lidar points. Small points are lidar points projected
into camera image, colour coded from near (green) to far (red). Circles with black outlines are
tracked visual features, likewise colour-coded if they are associated with depth, and blue other-
wise.

My approach to associating visual features with depth accounts for both sparsity and
and most of occlusion. It is also both faster and simpler to implement compared to the
aforementioned methods. This is made possible by making two observations about the
geometric properties of a typical lidar sensor. First, an interpolationona line segment (as
opposed to aplanar patch) is su�icient since a typical lidar sensor has verydense angular
resolution in one axis despite sparse resolution in the other. For example, the Velodyne
HDL-64E has very dense azimuth resolution, so interpolation in the altitude direction is
muchmore important. In fact, for the KITTI data set, the median pixel distance between
points in the azimuth direction is less than 3 pixels.

Second, a KD-tree or such data structure is unnecessary because the lidar points ar-
rive in nearly sorted order due to the scanning motion of the lidar sensor. The only out-
of-order points arise due to occlusion caused by parallax and can be removed in a single
pass. A lidar spinning in one axis with k lasers will produce k sorted “rings”, or layers,
of points. Each ring projects to a “row” of points in the image frame. Equivalently, a li-

21

dar with a single laser spinning in two axes will also produce k “rings” and “rows”, if the
rotation rate in one axis is k times the other.

When iterating over each ring, a lidar point is projected if it is in front of the camera
and within the camera’s field of view. Projected points are stored in a stack. Suppose
that the points project to mostly le�-to-right in the camera image. While processing a
newpoint, points in the stack to the right of and having greater depth than the newpoint
are assumed to be occluded and popped from the stack. Conversely, if the new point is
to the le� of and having greater depth than the last point in the stack, it is assumed to
be occluded and ignored. Otherwise, it is pushed to the stack. Thus, projecting points
into the camera image and removing occluded points runs inO(n) time complexity. This
method only handles occlusionwithin each ring, but does not account for the possibility
of twodi�erent ringsoccludingeachother. However, the sparsenatureof the lidarmeans
that these rings are far apart and are unlikely to occlude each other.

For any row of lidar points, a binary search su�ices to find the closest lidar point in
the x-direction to any query point. Another binary search over the k rows su�ices to
find the two closest rows in the positive and negative y direction. Then a segment is
formed from the two points from these two rows. The query point is then associated
with the interpolated position on this segment. As the query algorithm relies only on
binary search, the time complexity is inO(log n).

The running time of the entire pose estimation pipeline is not dominated by depth
association, but rather by the later steps discussed in the next section. However, the run-
ning timeof depth associationbecomesmore important if there aremany cameras, if the
camera operates at amuchhigher framerate than lidar, or if expensive steps like point set
registration are only run at keyframes. For more discussion, refer to section 6.1.

22

4 Front End: Frame-to-FrameMotion Estimation

The fulfilment of what exists potentially,
in so far as it exists potentially, is motion.

Aristotle
The Basic Works of Aristotle (1941)

Let us consider two frames {Cm} and {Cs}, whereCm is located at the origin andCs

is located with pose expressed by the homogeneous rigid transformation as in equation
6. The goal of frame-to-frame motion estimation is to recover rigid transformationTs

m,
consisting of rotationR and translation t.

The parametrization of rotation in SO(3) is the angle-axis representation. Given a
3 × 1 rotation vector of the form θ = [θx, θy, θz]

T , the rotation matrix is obtained using
the Rodrigues formula [45],

R(θ) = e[θ]× = I +
[θ]×
‖θ‖

sin ‖θ‖+
[θ]2×
‖θ‖2

(1− cos ‖θ‖), (8)

where [θ]× is the 3×3 skew symmetricmatrix of θ. Geometrically, the rotation vector
represents a rotation by an angle equal to ‖θ‖ about the axis θ. We note that (R(θ))−1 =

R(−θ).
The optimization problem therefore has 6 parameters, which can be written as x =

[θ, t].

4.1 3D-3D Matching

Suppose that thecamera-lidar systemat{Cm}observes the3DpointM = [xm, ym, zm]T

associated with the pointS = [xs, ys, zs]
T observed from {Cs}.

The residual arising fromeach 3D-3D correspondence is simply the distance between
the two 3D points,

f3D-3D(M ,S;x) = S −RM − t. (9)

The function f3D-3D is vector-valued with size 3.

4.2 3D-2D Matching

Suppose that thecamera-lidar systemat{Cm}observes the3DpointM = [xm, ym, zm]T

associated with the 2D point s = [us, vs]
T observed from {Cs}.

23

The residual arising fromeach 3D-2D correspondence is simply the distance between
the 2D point and the 2D projection of the 3D point,

f3D-2D(M , s;x) = s−

[
x′m/z

′
m

y′m/z
′
m

]
(10)

where

M ′ =

x
′
m

y′m
z′m

 = RM + t. (11)

The function f3D-2D is vector-valued with size 2.
In the converse case, the camera at {Cm} observes the 2D pointm = [um, vm]T

associated with the 3D pointS = [xs, ys, zs]
T observed from {Cs}.

The residual arising from each 2D-3D correspondence is

f2D-3D(m,S;x) = m−

[
x′s/z

′
s

y′s/z
′
s

]
(12)

where

S′ =

x
′
s

y′s
z′s

 = R−1(M − t). (13)

The function f2D-3D is vector-valued with size 2.

4.3 2D-2D Matching

Suppose that the camera at {Cm} observes the 2D pointm = [um, vm, 1]T associated
with the 2D point s = [us, vs, 1]T observed from {Cs}.

The residual arising from each 2D-2D correspondence is due to the epipolar con-
straint between the two cameras,

f2D-2D(m, s;x) = sTEm (14)

whereE is the essential matrix, defined as:

E = [t]×R. (15)

24

As f2D-2D is a dot product, it is scalar-valued (but it is here typeset in boldface for con-
sistency with other residual functions). When computing [t]×, the translation is normal-
ized first. This prevents the algorithm from incorrectly biasing the translation towards
zero when 2D-2Dmatches make up the majority of available data.

4.4 Point Set Registration

Suppose two lidar point clouds corresponding to the desired frames areM and S . For
a pointM ∈ M, we would like to find three points in S0,S1,S2 ∈ S that are close to
R′M + t′, forming a plane. The transformationR′, t′ is the estimate of the transforma-
tion from the previous iteration. Then the point-to-plane distance is the residual.

As we have discussed in section 3.4, lidar point cloud data are organized in “rings”. If
we simply query the three closest points in S which are the closest toTM , then these
points are likely to belong to the same ring. Consequently, they are likely to be near-
collinear, resulting in an ill-conditioned situation. To overcome this, two of the points
are constrained to belong in di�erent rings.

To speed up querying the closest point in a ring, a KD-tree is constructed for each
ring. The three points are checked to be within a threshold distance of the query point.
LetN = (S1 − S0)× (S2 − S0) be the normal vector. The residual is:

fICP(M ,S0,S1,S2;x) =
1

‖N‖
NT (RM + t− S0) (16)

Similarly to the2D-2Dresidual,fICP is adotproductand is scalar-valued. Near-degenerate
planes whereN is close to zero are ignored.

In the interest of reducing computational cost, it is not necessary to compute the
residual for every pointM ∈ M, as the query step is expensive. As such, only one in
every 100 points inM is used. Compared to methods such as LOAM [65], which uses
fewer than 10 points per ring (albeit with heuristics to select and classify said points),
one in every 100 is still quite a large number of points.

4.5 Optimization Strategy

Having established the cost functions, the goal is to solve for the parameters that mini-
mize the sum of squares of residuals:

x∗ = arg min
x

1

2
‖F ‖2 (17)

25

Figure 6: Estimated motion of tracked keypoints. Top: le� camera image, Bottom: right camera
image. Yellow arrows: 3D-2Dmatches; Red arrows: 3D-3Dmatches; Teal arrows: 2D-2Dmatches;
Black arrows: outlier matches. Dark red points: points with depth; Dark blue points: points with-
out depth. Magenta segments: stereo correspondences.

where the cost function is the concatenation of all residuals.

F =


[ρ3D-3D(f3D-3D(M ,S;x); ρ3D-3D)∀M ,S ∈ 3D-3Dmatches]

[λ3D-2Dρ3D-2D(f3D-2D(M , s;x); ρ3D-2D)∀M , s ∈ 3D-2Dmatches]
[λ3D-2Dρ3D-2D(f2D-3D(m,S;x); ρ3D-2D)∀m,S ∈ 2D-3Dmatches]
[λ2D-2Dρ2D-2D(f2D-2D(m, s;x); ρ2D-2D)∀m, s ∈ 2D-2Dmatches]

[λICPρICP(fICP(M ,S0,S1,S2;x); ρICP)∀M ,S0,S1,S2 ∈ ICP matches]

 . (18)

The scaling constants λ3D-2D, λ2D-2D, and λICP are needed to compensate for the dif-
ferent units of the di�erent residuals, and are selected by hand. The functions ρ3D-3D,
ρ3D-2D, ρ2D-2D, and ρICP are robust loss functions to minimize the impact of outliers, and
are controlled by parameters ρ respectively.

To ensure robust performance even in the presence of outliers, the following choice

26

of loss functions is used:

ρ3D-3D(x; ρ3D-3D) = ρ3D-3D arctan

(
x

ρ3D-3D

)
(19)

ρ3D-2D(x; ρ3D-2D) = ρ3D-2D arctan

(
x

ρ3D-2D

)
(20)

ρ2D-2D(x; ρ2D-2D) = ρ2D-2D arctan

(
x

ρ2D-2D

)
(21)

ρICP(x; ρICP) = ρICP log

(
1 +

|x|
ρICP

)
(22)

When the residuals are much smaller than ρ, the arctangent loss function is linear,
and for values much larger than ρ, the value asymptotically approaches the constant
ρπ/2. As such, outliers with a large residual will have little or no e�ect on the optimiza-
tion, whereas inliers with a small residual would behave as though there were no loss
function. The consequence of using the arctangent loss function is that the optimization
problem may have many local minima. However, with a good initial guess, it is unlikely
for the algorithm to converge to an incorrect local minimum. As the motion of a moving
vehicle is generally smooth, a good initial guess can be obtainedwith a first order extrap-
olation of motion. Apart from relying on a good initial guess, one method to widen the
basin of convergence to the correct minimum is to adjust the parameters ρ during the
optimization process, in a way similar to annealing.

The Cauchy loss function used for ρICP is less robust against outliers than the arctan-
gent loss function. However, ICP correspondences are only established for nearby points
anyway, so it is nearly impossible for the fICP to be large. In contrast, matching using fea-
ture descriptors can result in outliers arbitrarily far apart, necessitating the arctangent
loss function.

Each ρ is set to approximately the median value of f as determined through experi-
mentation. The λ values are chosen to ensure that the residuals arising from each type
of matching contributes equally to the optimization problem.

In general, when performing nonlinear optimization, it is necessary to compute the
derivative of the objective function F in the form of the Jacobian matrix. Fortunately,
the Ceres Solver library [1] provides automatic di�erentiation, which computes the exact
derivativewithinmachineaccuracy. Automaticdiferentiationhasasymptoticallyoptimal
performance and tends to be more e�icient in practice than manually or symbolically
finding the derivative, especially with respect to many inputs, although manually opti-
mizing the derivative can be faster in performance-critical situations. The alternative to

27

computing the exact Jacobian is to approximate it using numerical methods, which can
be slow and numerically unstable.

Having found the Jacobian matrix J, the solution of equation 17 is found iteratively
using the Levenberg–Marquardt method. Nonlinear optimization is usually based on
solving a sequence of linear approximations of the original problem:

F (x+ ∆x) ≈ F (x) + J(x)∆x (23)

which allows equation 17 to be expressed as:

min
∆x

1

2
‖J(x)∆x+ F (x)‖2. (24)

The Levenberg–Marquardt algorithm belongs to a class of optimization algorithms
known as trust region solvers, which, given some trust region radius µ, attempts to solve

arg min
∆x

1

2
‖J(x)∆x+ F (x)‖2 (25)

such that ‖D(x)∆x‖2 ≤ µ,L ≤ x+ ∆x ≤ U (26)

The solution to this can be obtained by solving an unconstrained optimization of the
form

arg min
∆x

1

2
‖J(x)∆x+ F (x)‖2 +

1

µ
‖D(x)∆x‖2 (27)

whereD is typically chosen to be the square root of the diagonal ofJTJ. In this case,
this is solved using factorization, implemented in the DENSE_SCHUR method in Ceres
Solver [1].

4.6 Triangulation of Features

As a visual feature is tracked over several frames and is observed by multiple cameras,
we can estimate its 3Dposition through triangulation. Given a set of 3D observations and
2D observations from known camera poses, the position of the point may be optimized
using the same set of cost functions as discussed in sections 4.1 and 4.2, where the poses
of the cameras are held constant.

28

5 Back End: Loop Closure and Pose-Graph Optimization

We are at a moment, I believe, when our
experience of the world is less that of a
long life developing through time than
that of a network that connects points
and intersects with its own skein.

Michel Foucault
“Of Other Spaces” (1967)

Although the focus of this thesis is the novel motion estimation front end, a robust
back end is necessary in anypose estimation system todeliver a globally consistentmap.
Here, I do not apply bundle adjustment. The only edges in the pose graph are estimated
between frames using the front end.

For now, a loop closure is simply deemed to be two vertices that are closer together
in space than a certain threshold, yet far apart in time. No appearance data is used to
determine loop closures. If such a loop closure is detected, the front end frame-to-frame
relative pose estimation is runbetween the two frames. Should the result fail to converge
or result in an estimate significantly di�erent from the initial guess, this is removed from
the pose graph.

Figure 7: Pose-graph example. Circles indicate robot poses at di�erent time steps. Blue arcs
indicate consecutive frame-to-frame transformations using tracked features. Red dashed arcs
indicate loop closure frame-to-frame transformations using matched features.

An advantage of using ICP in VELO is that, during a loop closure, the robot does not
have to be facing in the same direction for frame-to-frame pose estimation to function.
Whereas the field of view of a camera is narrow and requires the robot to be facing the
sameway for visual features to be associated, the lidar point cloudhas 360 ◦ field of view,
allowing frame-to-frame relative transformation to be estimated regardless of orienta-
tion. That notwithstanding, visual features are still attempted to be matched between
potential loop closures using the FREAK descriptors, in order to provide evenmore infor-

29

mation during loop closures.
In addition, relative transformations are estimated between each frame t and t − 1,

t− 2, and so on, until insu�icient tracked visual features remain. This reduces dri� over
time. As visual odometry is very fast, and a band matrix is a form of sparse system that
iSAM is very e�icient at solving, doing soonly results in using a constant factormore time.

30

6 Implementation

The pose estimation system is implemented in C++11 and compiled with the GNU Com-
piler Collection (GCC) version 6.1.1. The following libraries are used:

• Ceres Solver [1] is used to perform nonlinear optimization for the frontend.

• iSAM [30][31][46] version 1.7 is used to perform pose-graph optimization.

• OpenCV [8] version 3.1.0 is used to process images, including detection and extrac-
tion of visual features.

• Point Cloud Library (PCL) [51] version 1.8.0 is used to process 3D point clouds.

• Eigen [22] version 3.2.8-4 is used to provide linear algebra.

To obtain the best performance, Ceres Solver and OpenCV are compiled from source
using the latest version in the Git repository as of 2016-07-06. OpenCV and PCL are com-
piled against with NVidia CUDA version 7.5 to provide graphics processing unit (GPU) ac-
celeration, and OpenBLAS-Lapack 0.2.18 to provide optimized linear algebra.

Thesourcecodewhich implements thealgorithmdescribed in this thesis canbe found
on Bitbucket at:

• https://bitbucket.org/dllu/vision-enhanced-lidar-odometry

Computing hardware consists of:

• Intel Core i7 6700K, four cores at 4.0 GHz

• 32 GiB DDR4memory at 2800 MHz

• Two NVidia GeForce GTX 980 with 4 GiB of memory each

• Samsung 850 Evo 500 GB solid state drive

To process multiple data sets in parallel, GNU Parallel version 20160622 [57] is used.

31

https://bitbucket.org/dllu/vision-enhanced-lidar-odometry

6.1 Time Complexity

In this thesis, I have prioritized accuracy over running time. However, in order for a pose
estimation system tobeuseful, it has to be able to function in real time. Itmustmoreover
be asymptotically fast, so as to scale well when future robots are expected to have faster
response times, and sensors improve in resolution.

Therefore, a theoretical analysisof timecomplexity isdiscussed in this section. Where
there are n lidar points,m visual features, and p pixels, the time complexity of each step
in the pose estimation pipeline is summarized in table 1. Typical values ofn and p are 105

and a typical value ofm is 103.

Step Time complexity
Detectingm visual features in image of p pixels O(p log p)

Trackingm visual features using optical flow O(m)

Constructingm feature descriptors O(m)

Feature depth association O(m log n+ n)

Feature correspondence matching (single threaded) O(m2)

Feature correspondence matching (g threads, g ≤ m) O(m2/g)

Constructing KD-tree of lidar points O(n log n)

Lidar point association in point set registration O(n log n)

One iteration of frame-to-framemotion estimation O(n+m)

iSAM batch optimization, t frames O(t3)worst case,O(t1.5) typical

Table 2: Summary of time complexity for the steps in pose estimation pipeline

The time complexity of detecting GFTT keypoints is dominated by sorting the list of
eigenvalue scores, which isO(p log p). Note that the OpenCV implementation of GFTT is
highly e�icient andusesOpenCL toharness themassively parallel capabilities of theGPU
to accelerate finding the eigenvalues. This gives a constant time speedup over the single
threadedO(p) time it would take to do so. As each of them features is added, enforcing
the minimum distance constraint is constant time due to the grid strategy discussed in
section 3.1. Hence the features are added in O(m). The total time complexity of GFTT
keypoint detection isO(p log p+m) = O(p log p) asm is necessarilymuch smaller than
p.

Trackingm features using sparse LKT optical flow uses linear timeO(m).
The time taken to construct the FREAK descriptors is linear in m because they are

32

computed independently, each taking a constant amount of time.
The time complexity of feature depth associationhas beendiscussed at length in sec-

tion3.4. Inpractice, thebinary searchover thek rings canbe replacedwitha linear search
as k ≤ 64 is quite small.

The time complexity of feature correspondencematching between two frames, each
containingm features, is O(m2) because the distance of every feature in one frame to
every feature in the other frame must be computed. In the case of FREAK descriptors,
the distance metric is the Hamming distance of 64 bytes. Modern processors that sup-
port SSE4.2 instruction set can use the 64 bit POPCNT instruction to e�iciently compute
Hamming distance, reducing the running time by a constant factor. Even then, anO(m2)

time complexity is the slowest step in the pipeline. However, OpenCV provides a CUDA
implementation of featurematchingwhich leverages the 103 cores of a GPU tomassively
speedup this embarrassinglyparallel problem. Since thenumberof cores is similar to the
numberof features, the running time for featurematchingbecomes linear inm. Note that
featurematching is only used for running frame-to-frame pose estimation in a loop clo-
sure setting. For consecutive frames, LKT optical flow tracking is relied upon, as desribed
in section 3.2.

To perform point set registration using ICP, a KD-treemust be constructed. The Point
CloudLibraryprovidesane�icientapproximate implementationwhich runs inO(n log n).
It uses theFast Library for ApproximateNearestNeighbors (FLANN) [41]. Next, theKD-tree
will bequeriedup toO(n) times. This also runs inO(n log n), as eachof thenquerieswill
be found inO(log n). However, a large constant factor in the running timeexists, because
of having to find threepoints from twodi�erent rings. This ismitigatedbydownsampling
themovingpoint cloudbyonlyqueryinga small fractionofpoints sampledevenly ineach
of the k rings.

During one iteration of the frame-to-frame motion estimation, there are O(m) ele-
ments in the cost function arising from visual features and O(n) elements arising from
ICP. The optimization problem is only of six parameters so the time taken to solve is only
proportional to the number of residuals, which isO(n+m).

Batch optimization using iSAM, should it be necessary to run, can take up toO(t3) for
t frames, in the absolute worst case where an edge exists betwen every pair of frames.
In practice, the pose-graph is sparse, and the adjacency matrix has only O(t) nonzero
elements, with only very few loop closure edges. Under certain conditions, e.g. when
the pose graph is planar, iSAM is able to e�iciently solve the system in O(t1.5) [30]. We

33

note that, while pose estimation is running, generally only an incremental update, such
as a Givens rotation, is needed [30].

6.2 Experimental Performance

To analyze the practical performance of the algorithm, Valgrind version 3.11.0 with Call-
grind is used to profile the pipeline to determine the relative time takenby each function.

As table3 shows,with single threaded featurecorrespondencematching, thequadratic
time complexity results in this step being the most expensive. Experiments reveal that
switching to the CUDA implementation improves performance by 100 times, e�ectively
rendering this step instant.

With CUDA-based feature correspondence matching, the most expensive step is KD-
tree construction and querying.

Frame-to-framemotion estimation tends to take approximately 0.5 swith 1500 visual
features. Point set registration using ICP accounts for around 0.4 s out of that.

Each iSAM incremental update takes less than 0.1 s. At the end of each run, a batch
optimization is performed, which takes about 10 s.

Step Proportion of time taken
Feature correspondence matching (single threaded) 30.62%
Lidar KD-tree querying in point set registration 24.22%

Detecting visual features 0.88%
Autodi�erentiation of cost function 0.72%
Projecting lidar points to camera 0.67%

Feature depth association 0.59%

Table 3: Profiling data for running frame-to-frame motion estimation using single
threaded feature correspondence matching and one iteration of ICP per frame. Steps
not shown are negligible in time consumed.

34

7 Evaluation

The VELO pipeline is evaluated on the KITTI data set [19]. This data set is collected by a
car equipped with a Velodyne HDL-64E lidar and two Point Grey Flea 2 cameras driving
in a variety of environments, including urban, highway, and orchard environments.

7.1 Front End Dead Reckoning Performance

The e�ectiveness of frame-to-frame motion estimation is tested without applying any
form of pose-graph optimization, bundle adjustment, or the use of keyframes. The al-
gorithm from section 4 is run on every consective pair of frames t and t − 1. Even when
using only dead reckoning, VELO performs reasonably well.

The translation error as reported by the KITTI evaluation tool is 1.48%.

Distance travelled (m) Translation error (%) Rotation error (rad)
100 1.1182 0.000176
200 1.2600 0.000147
300 1.4171 0.000131
400 1.5501 0.000119
500 1.6701 0.000109
600 1.7078 0.000101
700 1.6982 0.000095
800 1.6469 0.000089

Table 4: Error in translation and rotation evaluated over di�erent lengths of travel, aver-
aged over data sets 00 to 10.

35

 0

 100

 200

 300

 400

 500

-300 -200 -100 0 100 200 300

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-1500

-1000

-500

 0

 500

 0 500 1000 1500 2000

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

 0

 200

 400

 600

 800

-200 0 200 400 600 800

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-100

 0

 100

 200

 300

 0 100 200 300 400 500

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

 0

 50

 100

 150

 200

 250

 300

 350

 400

-200 -150 -100 -50 0 50 100 150 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-100

 0

 100

 200

 300

 400

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-100

 0

 100

 200

 300

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-50

 0

 50

 100

-200 -150 -100 -50 0

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-200

-100

 0

 100

 200

 300

 400

 500

 600

-400 -300 -200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-300

-200

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

Figure 8: Dead reckoning trajectories of KITTI data sets 00 to 10.

36

7.2 Full Closed Loop Performance

The e�ectiveness of the full VELO pipeline is tested on the KITTI data set. Overall perfor-
manceusing theKITTI evaluation tool is 1.0199%mean translation error per unit distance
travelled and 0.0051 ◦ per meter mean rotation error.

Distance (m) 00 01 02 03 04 05
100 0.9177 0.8235 0.7316 0.7092 0.4799 0.3804
200 1.0556 0.7779 0.8327 0.9850 0.5472 0.4087
300 1.1010 0.8507 0.9414 1.6568 0.4844 0.3803
400 1.0974 0.9710 0.9957 2.4049 × 0.3470
500 1.0356 1.1181 1.0138 3.1633 × 0.2961
600 0.9464 1.3433 0.9980 × × 0.2360
700 0.8666 1.6019 0.9689 × × 0.1999
800 0.7922 1.8639 0.9520 × × 0.1687

Distance (m) 06 07 08 09 10 Avg
100 0.4686 0.5625 1.3127 0.6870 0.6976 0.8083
200 0.7001 0.5191 1.6256 0.7387 1.0016 0.9536
300 0.8165 0.3859 1.9438 0.7769 1.1678 1.0758
400 0.7600 0.3063 2.0104 0.8241 1.3008 1.1250
500 0.4179 0.2275 1.9304 0.9115 1.4806 1.0998
600 0.2099 0.1125 1.9031 0.8893 1.5472 1.0588
700 0.1359 × 1.9693 0.7456 1.6687 1.0550
800 0.0557 × 2.0245 0.6245 1.4934 1.0428

Table 5: Translation error (%) for each data set evaluated over di�erent lengths of travel.

37

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-1500

-1000

-500

 0

 0 500 1000 1500

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

 0

 200

 400

 600

 800

-200 0 200 400 600 800

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-100

 0

 100

 200

 300

 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

 0

 50

 100

 150

 200

 250

 300

 350

 400

-200 -150 -100 -50 0 50 100 150 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-100

 0

 100

 200

 300

 400

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-100

 0

 100

 200

 300

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-50

 0

 50

 100

-200 -150 -100 -50 0

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-200

-100

 0

 100

 200

 300

 400

 500

 600

-400 -300 -200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

-300

-200

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

Figure 9: Loop closed, pose graph optimized KITTI data sets 00 to 10.

38

Distance (m) Rotation error (rad)
100 0.000170
200 0.000113
300 0.000089
400 0.000075
500 0.000066
600 0.000060
700 0.000055
800 0.000050

Table 6: Error in rotation evaluated over di�erent lengths of travel, averaged over data
sets 00 to 10.

7.3 Discussion

Figure 10: Failure case in visual odometry on data set 01 when ICP is disabled.

At a glance, performance ondata set 01 seems to beworse than the others. The visual
odometry component of the VELO pipeline appears to fail on the highway scene, for two
reasons. First, the smooth appearance of the road means that few or no good features
to track can be extracted. Second, many of the features occur on the railings on the side
of the road. The railing has a repetitive appearance and su�ers from the stroboscopic

39

Figure 11: Failure case in visual odometry on data set 08 when ICP is disabled.

e�ect. The remaining features are found on distant objects, which are beyond the range
of lidar, and also impossible to be reliably triangulated.

Fortunately, the tightly coupled approach of VELO allows the point-to-plane ICP to
converge to a reasonable solution despite the poor performance of visual odometry. It is
unclear how DEMO [64], which also relies on the OpenCV implementation of LKT sparse
optical flow tracking, manages to perform well without using lidar scanmatching.

The performance on data set 08 is also poor. From figure 11 appears that the dynamic
range of the camera is not su�icient to correctly expose di�erent parts of the image. As
a consequence of the GFTT implementation used here, few or no reliable features are
extracted in one half of the image. It is possible that using di�erent GFTT thresholds for
di�erent grid cells in the image, such as in DEMO [64], will improve results by having a
more even distribution of features in the image. It is possible that the large amount of
foilage in the orchard scenes causes lidarmeasurements to be less reliable. More careful
lidar feature selection, such as in LOAM [65], may improve results.

Finally, VELO relies on de-warped lidar point clouds provided by the KITTI data set,
whereas LOAM [65] and V-LOAM [66] apply their own de-warping. It is possible that the
KITTI point clouds contain distortions which cause VELO’s ICP-based point set registra-
tion to performworse than anticipated, although it appears that ICP-based loop closure
is working as intended.

40

8 Conclusion

A new algorithm called Vision-Enhanced Lidar Odometry and Mapping (VELO), which
fusesvisualodometryand lidarodometry, ispresented. Compared topreviousapproaches,
VELO is able to function even when either lidar or the camera is not functioning reliably.
Tests on the publicly available KITTI data set yields results comparable to state-of-the-art
pose estimation systems.

Despite a sophisticated approach to feature tracking, inadequate visual feature re-
liability in certain data sets cause VELO to behave worse than the best state-of-the-art
algorithms on the KITTI data set leaderboards. Nonetheless, thanks to pose graph op-
timization and lidar scan matching, VELO is able to output a reasonable solution even
when feature tracking fails.

Lidar scan matching is advantageous in estimating transformations in loop closure
due to the 360 ◦ field of view of the lidar.

8.1 Future Work

Currently, VELO assumes that motion distortion in lidar point clouds have been ade-
quately removed using an external pose source. This may not be the case in reality. For
future work, motion distortion can be removed using the method of V-LOAM [66], which
operates in multiple steps: first, 3D-2D and 2D-2Dmatching are used to estimatemotion
distortion, and then point set registration may be performed a�erwards. Since VELO al-
ready uses 3D-2D and 2D-2D matching, it will be straightforward to implement this en-
hancement.

The feature tracking in VELO currently uses available implementations in OpenCV.
However, other algorithms have managed to achieve impressive performance without
lidar by tracking features in other ways [14][42]. By incorporating such approaches into
the feature tracking pipeline of VELO, surely the performance will improve too.

Thenonlinearoptimization inVELO isprone to localminima. This is an inherentdraw-
back of the Levenberg-Marquardt algorithm, and is exacerbated by the use of the arctan-
gent loss function. As such, it requires a good initial guess. Random sample consensus
may be used to improve frame-to-frame pose estimation even in the absence of a good
initial guess.

Much of VELO is parallelizable. For example, during point set registration, each of
the closest-point queries can be executed independently in parallel. Using n processors

41

(for example, in a graphics processing unit), the time complexity may be improved from
O(n log n) toO(log n). As this step is the bottleneck in performance, such a drastic im-
provement will surely allow VELO to operate in real time. In addition, the back end and
the front endmay be run in parallel.

The cost functions used in frame-to-frame motion estimation do not take into ac-
count thedi�erent uncertainty in a 3Dpoint in the azimuth, altitude, and rangedirection.
Angular localization tends to be much better than range localization of a point. If these
uncertainties were taken into account, the algorithmwill be more robust.

For a self-driving vehicle in an urban environment, many cues may be used to im-
prove pose estimation. Buildings tend to have many vertical lines, and this can be used
to correct for rotational dri�.

As further future work, it will be interesting to explore fusing dense stereo odome-
try methods, such as those similar to LSD-SLAM [16], with lidar data. Alternatively, deep
learning methods such as [13] have recently become popular. Combining these with
lidar-based pose estimation will be a unique challenge.

42

9 Acknowledgements

This thesis would not have been possible without the help of many people. Most of all I
thankmyadvisor Dr. GeorgeKantor for providing valuable insight anddirection through-
out my studies at Carnegie Mellon.

I also thank my thesis committee members Dr. Michael Kaess and Ji Zhang for over-
seeing my research and providing useful feedback.

I am grateful for my classmates and colleagues. I enjoyed collaborating with Guan-
Horng Liu, Masa Uenoyama, and Srinivasan Vijayarangan on the Yamaha Viking project.
I also thank my friends Jonathan Shen, Aram Ebtekar, Junxing Wang for the fun conver-
sations and activities.

I also thank Dr. Danny Sleator for allowing me to participate in practice sessions for
competitive programming, as well as two trips to the Association of Computing Machin-
ery International Collegiate Programming Contest regionals as an uno�icial contestant.

Finally, I thank my parents Ding Lu and Qing Li, and my sister Stephanie Lu for their
ceaseless love and encouragement.

43

References

[1] Agarwal, Sameer, and Keir Mierle. “Ceres Solver”. http://ceres-solver.org.

[2] Ahuja, Satyajeet, and Steven LakeWaslander. “3D Scan Registration Using Curvelet
Features.” Computer and Robot Vision (CRV), 2014 Canadian Conference on. IEEE,
2014.

[3] Alahi, Alexandre, Raphael Ortiz, and Pierre Vandergheynst. “Freak: Fast retina key-
point.” Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on.
IEEE, 2012.

[4] Bay, Herbert, Tinne Tuytelaars, and Luc Van Gool. “Surf: Speeded up robust fea-
tures.” Computer vision—ECCV 2006. Springer Berlin Heidelberg, 2006. 404-417.

[5] Besl, Paul J., andNeil D.McKay. “Method for registration of 3-D shapes.”Robotics-DL
tentative. International Society for Optics and Photonics, 1992.

[6] Biber, Peter, andWolfgang Straßer. “The normal distributions transform: A new ap-
proach to laser scan matching.” Intelligent Robots and Systems, 2003.(IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on. Vol. 3. IEEE, 2003.

[7] Bouguet, Jean-Yves. “Pyramidal implementation of the a�ine Lucas Kanade feature
tracker description of the algorithm.” Intel Corporation 5.1-10 (2001): 4.

[8] Bradski, Gary. “The OpenCV library.” Doctor Dobb’s Journal of So�ware Tools 25.11
(2000): 120-126.

[9] Calonder, Michael, Vincent Lepetit, Christoph Strecha, and Pascal Fua. “Brief: Bi-
nary robust independent elementary features.” Computer Vision–ECCV 2010 (2010):
778-792.

[10] Caroli, Manuel, PedroMMdeCastro, Sébastien Loriot, Olivier Rouiller, Monique Teil-
laud, and CamilleWormser. “Robust and e�icient delaunay triangulations of points
on or close to a sphere.” Experimental Algorithms. Springer Berlin Heidelberg, 2010.
462-473.

[11] Chen, Yang, andGérardMedioni. “Objectmodellingby registrationofmultiple range
images.” Image and vision computing 10.3 (1992): 145-155.

44

http://ceres-solver.org

[12] Chui, Haili, and Anand Rangarajan. “A new point matching algorithm for non-rigid
registration.” Computer Vision and Image Understanding 89.2 (2003): 114-141.

[13] Costante, Gabriele, Michele Mancini, Paolo Valigi, and Thomas A. Ciarfuglia. “Ex-
ploring Representation Learning With CNNs for Frame-to-Frame Ego-Motion Esti-
mation.” Robotics and Automation Letters, IEEE 1.1 (2016): 18-25.

[14] Cvĭsić, Igor, and Ivan Petrović. “Stereo odometry based on careful feature selection
and tracking.”Mobile Robots (ECMR), 2015 European Conference on. IEEE, 2015.

[15] Das, Aruneema, James Servos, and Steven Lake Waslander. “3D scan registration
using the normal distributions transform with ground segmentation and point
cloud clustering.” Robotics and Automation (ICRA), 2013 IEEE International Confer-
ence on. IEEE, 2013.

[16] Engel, Jakob, Thomas Schöps, and Daniel Cremers. “LSD–SLAM: Large-scale direct
monocular SLAM.” Computer Vision—ECCV 2014. Springer International Publishing,
2014. 834-849.

[17] Fitzgibbon, Andrew W. “Robust registration of 2D and 3D point sets.” Image and Vi-
sion Computing 21.13 (2003): 1145-1153.

[18] Gao, Xiao-Shan, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei Cheng. IEEE transac-
tions on pattern analysis andmachine intelligence 25.8 (2003): 930-943.

[19] Geiger, Andreas, Philip Lenz, Christoph Stiller, and Raquel Urtasun. “Vision meets
robotics: The KITTI dataset.” The International Journal of Robotics Research (2013):
0278364913491297.

[20] Gelfand, Natasha, Niloy J.Mitra, Leonidas J.Guibas, andHelmutPottmann. “Robust
global registration.” Symposium on geometry processing. Vol. 2. No. 3. 2005.

[21] Granger, Sébastien, and Xavier Pennec. “Multi-scale EM-ICP: A fast and robust ap-
proach for surface registration.” Computer Vision—ECCV (2002): 69-73.

[22] Guennebaud, Gaël, Benoît Jacob. Eigen v3, http://eigen.tuxfamily.org. 2010.

[23] Harris, Chris, and Mike Stephens. “A combined corner and edge detector.” Alvey vi-
sion conference. Vol. 15. 1988.

45

http://eigen.tuxfamily.org

[24] Hartley, Richard, and AndrewZisserman.Multiple viewgeometry in computer vision.
Cambridge university press, 2003.

[25] Henry, Peter, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox. “RGB-D
mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor envi-
ronments.” The International Journal of Robotics Research 31.5 (2012): 647-663.

[26] Horaud, Radu, Bernard Conio, Olivier Leboulleux, and Bernard Lacolle. “An analytic
solution for the perspective 4-point problem.” Computer Vision and Pattern Recog-
nition, 1989. Proceedings CVPR’89., IEEE Computer Society Conference on. IEEE, 1989.

[27] Jian, Bing, and Baba C. Vemuri. “Robust point set registration using gaussian mix-
ture models.” Pattern Analysis and Machine Intelligence, IEEE Transactions on 33.8
(2011): 1633-1645.

[28] Johnson, Andrew Edie, and Sing Bing Kang. “Registration and integration of tex-
tured 3D data.” Image and vision computing 17.2 (1999): 135-147.

[29] Johnson, Andrew E., and Martial Hebert. “Using spin images for e�icient object
recognition in cluttered 3D scenes.” Pattern Analysis and Machine Intelligence, IEEE
Transactions on 21.5 (1999): 433-449.

[30] Kaess, Michael, Ananth Ranganathan, and Frank Dellaert. “iSAM: Incremental
smoothing andmapping.” IEEE Transactions on Robotics 24.6 (2008): 1365-1378.

[31] Kaess, Michael, and Frank Dellaert. “Covariance recovery from a square root infor-
mationmatrix for data association.”Robotics and autonomous systems 57.12 (2009):
1198-1210.

[32] Kümmerle, Rainer, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram
Burgard. “g2o: A general framework for graph optimization.” Robotics and Automa-
tion (ICRA), 2011 IEEE International Conference on. IEEE, 2011.

[33] Lepetit, Vincent, Francesc Moreno-Noguer, and Pascal Fua. “EPnP: An accurate
O(n) solution to the PnP problem.” International Journal of Computer Vision 81.2
(2009): 155-166.

[34] Leutenegger, Stefan, Margarita Chli, and Roland Y. Siegwart. “BRISK: Binary robust
invariant scalable keypoints.” Computer Vision (ICCV), 2011 IEEE International Confer-
ence on. IEEE, 2011.

46

[35] Leutenegger, Stefan, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Fur-
gale. “Keyframe-based visual–inertial odometry using nonlinear optimization.” The
International Journal of Robotics Research 34.3 (2015): 314-334.

[36] Lowe, David G. “Object recognition from local scale-invariant features.” Computer
vision, 1999. The proceedings of the seventh IEEE international conference on. Vol. 2.
Ieee, 1999.

[37] Lucas, Bruce D., and Takeo Kanade. “An iterative image registration technique with
an application to stereo vision.” Artificial Intelligence, 1981. Proceedings of the 7th
International Conference on (IJCAI). Vol. 81. 1981.

[38] Magnusson, Martin. “The three-dimensional normal-distributions transform: an ef-
ficient representation for registration, surface analysis, and loop detection.” (2009).

[39] Miksik,Ondrej, andKrystianMikolajczyk. “Evaluationof localdetectorsanddescrip-
tors for fast feature matching.” Pattern Recognition (ICPR), 2012 21st International
Conference on. IEEE, 2012.

[40] Mücke, Ernst P., Isaac Saias, and Binhai Zhu. “Fast randomized point location with-
out preprocessing in two-and three-dimensional Delaunay triangulations.” Pro-
ceedings of the twel�h annual symposium on Computational geometry. ACM, 1996.

[41] Muja, Marius, andDavid G. Lowe. “Flann, fast library for approximate nearest neigh-
bors.” International Conference on Computer Vision Theory and Applications (VIS-
APP’09). INSTICC Press, 2009.

[42] Mur-Artal, Raul, J. M. M. Montiel, and Juan D. Tardós. “Orb-slam: a versatile and
accurate monocular slam system.” IEEE Transactions on Robotics 31.5 (2015): 1147-
1163.

[43] Myronenko, Andriy, and Xubo Song. “Point set registration: Coherent point dri�.”
Pattern Analysis and Machine Intelligence, IEEE Transactions on 32.12 (2010): 2262-
2275.

[44] Nistér, David. “An e�icient solution to the five-point relative pose problem.” Pattern
Analysis and Machine Intelligence, IEEE Transactions on 26.6 (2004): 756-770.

[45] Rodrigues, Olinde. De l’attraction des sphéroïdes. Diss. 1815.

47

[46] Rosen, David M., Michael Kaess, and John J. Leonard. “An incremental trust-region
method for robust online sparse least-squares estimation.” Robotics and Automa-
tion (ICRA), 2012 IEEE International Conference on. IEEE, 2012.

[47] Rosten, Edward, and TomDrummond. “Machine learning for high-speed corner de-
tection.” Computer Vision–ECCV 2006. Springer Berlin Heidelberg, 2006. 430-443.

[48] Rublee, Ethan, Vincent Rabaud, Kurt Konolige, and Gary Bradski. “ORB: an e�icient
alternative to SIFT or SURF.” Computer Vision (ICCV), 2011 IEEE International Confer-
ence on. IEEE, 2011.

[49] Rusinkiewicz, Szymon, andMarc Levoy. “E�icient variants of the ICP algorithm.” 3-D
Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on.
IEEE, 2001.

[50] Rusu, RaduBogdan,NicoBlodow, andMichaelBeetz. “Fastpoint featurehistograms
(FPFH) for 3D registration.” Robotics and Automation, 2009. ICRA’09. IEEE Interna-
tional Conference on. IEEE, 2009.

[51] Rusu, Radu Bogdan, and Steve Cousins. “3d is here: Point cloud library (pcl).”
Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011.

[52] Segal, Aleksandr, Dirk Haehnel, and Sebastian Thrun. “Generalized-ICP.” Robotics:
Science and Systems. Vol. 2. No. 4. 2009.

[53] Shi, Jianbo, andCarloTomasi. “Good features to track.”ComputerVisionandPattern
Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on.
IEEE, 1994.

[54] Smith, Randall, Matthew Self, and Peter Cheeseman. “Estimating uncertain spatial
relationships in robotics.” Autonomous robot vehicles. Springer New York, 1990. 167-
193.

[55] Steder, Bastian, Radu Bogdan Rusu, Kurt Konolige, and Wolfram Burgard. “NARF:
3D range image features for object recognition.” Workshop on Defining and Solving
Realistic Perception Problems in Personal Robotics at the IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems (IROS). Vol. 44. 2010.

48

[56] Stoyanov, TodorDimitrov,MartinMagnusson,HenrikAndreasson, andAchimLilien-
thal. “Fast and accurate scan registration through minimization of the distance be-
tween compact 3D NDT representations.” The International Journal of Robotics Re-
search (2012): 0278364912460895.

[57] Tange, Ole. “Gnu parallel-the command-line power tool.” The USENIXMagazine 36.1
(2011): 42-47.

[58] Tomasi, Carlo, and Takeo Kanade. “Shape and motion from image streams under
orthography: a factorization method.” International Journal of Computer Vision 9.2
(1992): 137-154.

[59] Triggs, Bill, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon.
“Bundle adjustment–a modern synthesis.” International workshop on vision algo-
rithms. Springer Berlin Heidelberg, 1999.

[60] Tsin, Yanghai, and TakeoKanade. “A correlation-based approach to robust point set
registration.” Computer Vision—ECCV 2004. Springer Berlin Heidelberg, 2004. 558-
569.

[61] Weiszfeld, Endre. “Sur le point pour lequel la sommedes distances de n points don-
nés est minimum.” Tohoku Math. J 43.355-386 (1937): 2.

[62] Whelan, Thomas, StefanLeutenegger, RenatoF. Salas-Moreno, BenGlocker, andAn-
drew J. Davison. “ElasticFusion: Dense SLAMwithout a pose graph.” Proceedings of
Robotics: Science and Systems (RSS). 2015.

[63] Yang, Jiaolong, Hongdong Li, and Yunde Jia. “GO-ICP: Solving 3d registration e�i-
ciently and globally optimally.” Proceedings of the IEEE International Conference on
Computer Vision. IEEE, 2013.

[64] Zhang, Ji, Michael Kaess, and Sanjiv Singh. “Real-time depth enhancedmonocular
odometry.” Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on. IEEE, 2014.

[65] Zhang, Ji, and Sanjiv Singh. “Loam: Lidar odometry and mapping in real-time.”
Robotics: Science and Systems Conference (RSS). 2014.

49

[66] Zhang, Ji, and Sanjiv Singh. “Visual-lidar odometry and mapping: Low-dri�, ro-
bust, and fast.” Robotics and Automation (ICRA), 2015 IEEE International Conference
on. IEEE, 2015.

[67] Zlot, Robert, and Michael Bosse. “E�icient large-scale 3Dmobile mapping and sur-
face reconstruction of an underground mine.” Field and service robotics. Springer
Berlin Heidelberg, 2014.

50

	Introduction
	Motivation
	Problem Statement
	Contribution
	Notation

	Background
	Lidar Motion Estimation
	Local point set registration
	Global point set registration

	Visual Odometry
	2D-2D matching
	3D-2D matching
	3D-3D matching

	Sensor Fusion
	Pose-Graph Optimization
	Loop closure detection

	Relation to My Work

	Overview of Method
	Extraction of Visual Features
	Feature Tracking and Descriptor Matching
	Camera Projection
	Feature Depth Association

	Front End: Frame-to-Frame Motion Estimation
	3D-3D Matching
	3D-2D Matching
	2D-2D Matching
	Point Set Registration
	Optimization Strategy
	Triangulation of Features

	Back End: Loop Closure and Pose-Graph Optimization
	Implementation
	Time Complexity
	Experimental Performance

	Evaluation
	Front End Dead Reckoning Performance
	Full Closed Loop Performance
	Discussion

	Conclusion
	Future Work

	Acknowledgements

